Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Structure ; 32(3): 304-315.e5, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38159574

RESUMEN

SETDB1 and SETDB2 mediate trimethylation of histone H3 lysine 9 (H3K9), an epigenetic hallmark of repressive chromatin. They contain a non-canonical methyl-CpG-binding domain (MBD) and bifurcated SET domain, implying interplay between H3K9 trimethylation and DNA methylation in SETDB functions. Here, we report the crystal structure of human SETDB2 MBD bound to the cysteine-rich domain of a zinc-binding protein, C11orf46. SETDB2 MBD comprises the conserved MBD core and a unique N-terminal extension. Although the MBD core has the conserved basic concave surface for DNA binding, it utilizes it for recognition of the cysteine-rich domain of C11orf46. This interaction involves the conserved arginine finger motif and the unique N-terminal extension of SETDB2 MBD, with a contribution from intermolecular ß-sheet formation. Thus, the non-canonical MBD of SETDB1/2 seems to have lost methylated DNA-binding ability but gained a protein-protein interaction surface. Our findings provide insight into the molecular assembly of SETDB-associated repression complexes.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Humanos , Cisteína/metabolismo , ADN/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/química , Factores de Transcripción/metabolismo
2.
J Biol Chem ; 299(9): 105165, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37595872

RESUMEN

Attachment of polyubiquitin (poly-Ub) chains to proteins is a major posttranslational modification in eukaryotes. Linear ubiquitin chain assembly complex, consisting of HOIP (HOIL-1-interacting protein), HOIL-1L (heme-oxidized IRP2 Ub ligase 1), and SHARPIN (Shank-associated RH domain-interacting protein), specifically synthesizes "head-to-tail" poly-Ub chains, which are linked via the N-terminal methionine α-amino and C-terminal carboxylate of adjacent Ub units and are thus commonly called "linear" poly-Ub chains. Linear ubiquitin chain assembly complex-assembled linear poly-Ub chains play key roles in immune signaling and suppression of cell death and have been associated with immune diseases and cancer; HOIL-1L is one of the proteins known to selectively bind linear poly-Ub via its Npl4 zinc finger (NZF) domain. Although the structure of the bound form of the HOIL-1L NZF domain with linear di-Ub is known, several aspects of the recognition specificity remain unexplained. Here, we show using NMR and orthogonal biophysical methods, how the NZF domain evolves from a free to the specific linear di-Ub-bound state while rejecting other potential Ub species after weak initial binding. The solution structure of the free NZF domain revealed changes in conformational stability upon linear Ub binding, and interactions between the NZF core and tail revealed conserved electrostatic contacts, which were sensitive to charge modulation at a reported phosphorylation site: threonine-207. Phosphomimetic mutations reduced linear Ub affinity by weakening the integrity of the linear di-Ub-bound conformation. The described molecular determinants of linear di-Ub binding provide insight into the dynamic aspects of the Ub code and the NZF domain's role in full-length HOIL-1L.


Asunto(s)
Ubiquitina , Ubiquitinas , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Conformación Molecular , Dedos de Zinc , Ubiquitinación
3.
Protein Sci ; 32(10): e4768, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37632150

RESUMEN

Cyclization can stabilize the structure of proteins, as previously demonstrated in single-domain proteins. Although Lys48-linked polyubiquitin, a multi-domain protein, is also known to be cyclized in human cells, the structural effects of cyclization remain unclear. Here, we examined the impact of cyclization on the structural stability and dynamics of cyclic Lys48-linked diubiquitin (Ub2 ). As expected, cyclization increased the thermal stability of Ub2 and its resistance to proteolytic digestion, indicating that cyclization stabilized the structure of Ub2 . Furthermore, cyclization repressed the interdomain motion in Ub2 , but cyclic Ub2 still exhibited microsecond conformational exchange in NMR relaxation dispersion experiments. A series of long coarse-grained (CG) MD simulations visualized how cyclization slowed down the intrinsic nanosecond open-closed domain motion of Ub2 to microseconds. Thus, CG-MD analysis helped to explain the unexpected NMR relaxation results, thereby facilitating characterization of the structural stabilization of cyclic Ub2 .


Asunto(s)
Poliubiquitina , Humanos , Modelos Moleculares , Espectroscopía de Resonancia Magnética , Poliubiquitina/química , Conformación Molecular , Conformación Proteica
4.
Nanoscale Adv ; 5(5): 1345-1355, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36866257

RESUMEN

5 nanometer sized detonation nanodiamonds (DNDs) are studied as potential single-particle labels for distance measurements in biomolecules. Nitrogen-vacancy (NV) defects in the crystal lattice can be addressed through their fluorescence and optically-detected magnetic resonance (ODMR) of a single particle can be recorded. To achieve single-particle distance measurements, we propose two complementary approaches based on spin-spin coupling or optical super-resolution imaging. As a first approach, we try to measure the mutual magnetic dipole-dipole coupling between two NV centers in close DNDs using a pulse ODMR sequence (DEER). The electron spin coherence time, a key parameter to reach long distance DEER measurements, was prolonged using dynamical decoupling reaching T 2,DD ≈ 20 µs, extending the Hahn echo decay time T 2 by one order of magnitude. Nevertheless, an inter-particle NV-NV dipole coupling could not be measured. As a second approach, we successfully localize the NV centers in DNDs using STORM super-resolution imaging, achieving a localization precision of down to 15 nm, enabling optical nanometer-scale single-particle distance measurements.

5.
Nanoscale Adv ; 4(10): 2268-2277, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-36133696

RESUMEN

Detonation nanodiamonds (DNDs) are a class of very small and spherical diamond nanocrystals. They are used in polymer reinforcement materials or as drug delivery systems in the field of nanomedicine. Synthesized by detonation, only the final deaggregation step down to the single-digit nanometer size (<10 nm) unfolds their full potential. Existing deaggregation methods mainly rely on mechanical forces, such as high-power sonication or bead milling. These techniques entail drawbacks such as contamination of the sample and the need for a specialized apparatus. In this paper, we report a purely chemical deaggregation method by simply combining oxidation in air followed by a boiling acid treatment, to produce highly stable single-digit DNDs in a suspension. The resulting DNDs are surface functionalized with carboxyl groups, the final boiling acid treatment removes primary metal contaminants such as magnesium, iron or copper and the nanoparticles remain dispersed over a wide pH range. Our method can be easily carried out in a standard chemistry laboratory with commonly available laboratory apparatus. This is a key step for many DND-based applications, ranging from materials science to biological or medical applications.

6.
ACS Omega ; 7(4): 3212-3221, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35128234

RESUMEN

Cytosine methylation is an epigenetic modification essential for formation of mature heterochromatin, gene silencing, and genomic stability. In plants, methylation occurs not only at cytosine bases in CpG but also in CpHpG and CpHpH contexts, where H denotes A, T, or C. Methyl-CpG binding domain (MBD) proteins, which recognize symmetrical methyl-CpG dinucleotides and act as gene repressors in mammalian cells, are also present in plant cells, although their structural and functional properties still remain poorly understood. To fill this gap, in this study, we determined the solution structure of the MBD domain of the MBD6 protein from Arabidopsis thaliana and investigated its binding properties to methylated DNA by binding assays and an in-depth NMR spectroscopic analysis. The AtMBD6 MBD domain folds into a canonical MBD structure in line with its binding specificity toward methyl-CpG and possesses a DNA binding interface similar to mammalian MBD domains. Intriguingly, however, the binding affinity of the AtMBD6 MBD domain toward methyl-CpG-containing DNA was found to be much lower than that of known mammalian MBD domains. The main difference arises from the absence of positively charged residues in AtMBD6 that supposedly interact with the DNA backbone as seen in mammalian MBD/methyl-CpG-containing DNA complexes. Taken together, we have established a structural basis for methyl-CpG recognition by AtMBD6 to develop a deeper understanding how MBD proteins work as mediators of epigenetic signals in plant cells.

7.
Biomater Sci ; 9(21): 7049-7053, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34581326

RESUMEN

We constructed a highly sensitive fluorescence wide-field imaging system with a microwave source, implanted fluorescent diamond microparticles ("microdiamonds") subcutaneously into the dorsal skin of a mouse after sacrifice, and demonstrated the feasibility of using optically detected magnetic resonance (ODMR) to measure internal body temperature in a mammal.


Asunto(s)
Temperatura Corporal , Diamante , Animales , Espectroscopía de Resonancia Magnética , Ratones , Temperatura
8.
J Am Chem Soc ; 143(31): 11982-11993, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34338526

RESUMEN

Adenosine triphosphate (ATP) is an immensely well-studied metabolite serving multiple key biochemical roles as the major chemical energy currency in living systems, a building block of ribonucleic acids, and a phosphoryl group donor in kinase-mediated signaling. Intriguingly, ATP has been recently proposed to act as a hydrotrope that inhibits aggregation of amyloidogenic proteins; however, the underlying mechanism and the general physicochemical effect that coexistence with ATP exerts on proteins remain unclear. By combining NMR spectroscopy and MD simulations, here we observed weak but unambiguously measurable and concentration-dependent noncovalent interactions between ATP and various proteins. The interactions were most pronounced for an intrinsically disordered protein (α-synuclein) and for residues in flexible regions (e.g., loops or termini) of two representative folded proteins (ubiquitin and the dimeric ubiquitin-binding domain of p62). As shown by solution NMR, a consequence of the ATP-protein interaction was altered hydration of solvent-exposed residues in the protein. The observation that ATP interacted with all three proteins suggests that ATP is a general nonspecific binder of proteins. Several complementary biophysical methods further confirmed that, at physiological concentrations of ∼5-10 mM, ATP starts to form oligomeric states via magnesium-chelating and chelation-independent mechanisms, in agreement with previous studies. Although the observed ATP-protein interaction was relatively weak overall, the high ratio of ATP (monomeric free ATP, mono- and divalent ion-bound ATP, oligomeric and chelated ATP) to proteins in cells suggests that most proteins are likely to encounter transient interactions with ATP (and chemically similar metabolites) that confer metabolite-mediated protein surface protection.


Asunto(s)
Adenosina Trifosfato/química , Proteína Sequestosoma-1/química , Ubiquitina/química , alfa-Sinucleína/química , Sitios de Unión , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular
9.
J Am Chem Soc ; 143(28): 10604-10613, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34232041

RESUMEN

Formation of protein aggregates or fibrils entails the conversion of soluble native protein monomers via multiple molecular states. No spectroscopic techniques have succeeded in capturing the transient molecular-scale events of fibrillation in situ. Here we report residue- and state-specific real-time monitoring of the fibrillation of amyotrophic lateral sclerosis-related SOD1 by rheology NMR (Rheo-NMR) spectroscopy. Under moderately denaturing conditions, where NMR signals of folded and unfolded monomeric SOD1 are simultaneously observable, the cross-peak intensities of folded monomeric SOD1 decreased faster than those of the unfolded species, and a 310-helix in folded SOD1 was deformed prior to global unfolding. Furthermore, real-time protein dynamics analysis identified residues involved in the core structure formation of SOD1 oligomers. Our findings provide insight into local and global unfolding events in SOD1 and fibril formation. This Rheo-NMR analysis will be applicable not only to atomic-level monitoring of other amyloidogenic proteins but also to quantification of shear-induced structural changes of non-amyloidogenic proteins and elucidation of shear-enhanced chemical phenomena such as viscosity increase and crystallization of various solution-state compounds.

10.
Biomol NMR Assign ; 15(2): 427-431, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34286417

RESUMEN

von Willebrand factor (vWF) is an adhesive plasma protein that is important for platelet adhesion in normal hemostasis in response to vascular injury. Although large vWF multimers are released from storage granules of platelets and (sub-)endothelial cells in response to hemostatic stimuli, for normal physiological function, vWF multimers are required to be cleaved into smaller multimeric forms. The plasma metalloproteinase ADAMTS13 specifically cleaves the peptide bond located in the middle of the A2 domain of vWF (vWF-A2), but the cleavage site is buried inside the structure of vWF and is difficult to access in the absence of elevated flow shear stress. On the other hand, in the presence of high vascular shear stress, the structure of vWF-A2 is supposed to be unfolded, thereby becoming accessible for proteolysis by ADAMTS13. However, the atomic-level mechanism underlying shear-induced structural changes of vWF-A2 remains unclear and to date no solution NMR information is available. In this study, we present the backbone 1H, 13C, and 15N resonance assignments of mouse vWF-A2; side chain assignments of 13Cß are also provided. Secondary structure propensity analysis based on the assigned chemical shifts showed that mouse vWF-A2 forms similar secondary structures in solution to the previously determined crystal structure of human vWF-A2. The obtained NMR assignment data will contribute to an atomic-level characterization of shear-induced unfolding of vWF-A2 in solution.


Asunto(s)
Factor de von Willebrand , Animales , Ratones
11.
J Phys Chem B ; 125(10): 2521-2532, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33657322

RESUMEN

Aggregate formation of superoxide dismutase 1 (SOD1) inside motor neurons is known as a major factor in onset of amyotrophic lateral sclerosis. The thermodynamic stability of the SOD1 ß-barrel has been shown to decrease in crowded environments such as inside a cell, but it remains unclear how the thermodynamics of crowding-induced protein destabilization relate to SOD1 aggregation. Here we have examined the effects of a protein crowder, lysozyme, on fibril aggregate formation of the SOD1 ß-barrel. We found that aggregate formation of SOD1 is decelerated even in mildly crowded solutions. Intriguingly, transient diffusive interactions with lysozyme do not significantly affect the static structure of the SOD1 ß-barrel but stabilize an alternative excited "invisible" state. The net effect of crowding is to favor species off the aggregation pathway, thereby explaining the decelerated aggregation in the crowded environment. Our observations suggest that the intracellular environment may have a similar negative (inhibitory) effect on fibril formation of other amyloidogenic proteins in living cells. Deciphering how crowded intracellular environments affect aggregation and fibril formation of such disease-associated proteins will probably become central in understanding the exact role of aggregation in the etiology of these enigmatic diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Superóxido Dismutasa , Difusión , Humanos , Muramidasa , Mutación , Superóxido Dismutasa-1/genética
12.
Biochemistry ; 60(8): 573-583, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33616406

RESUMEN

Polyubiquitin is a multifunctional protein tag formed by the covalent conjugation of ubiquitin molecules. Due to the high rigidity of the ubiquitin fold, the ubiquitin moieties in a polyubiquitin chain appear to be structurally equivalent to each other. It is therefore unclear how a specific ubiquitin moiety in a chain may be preferentially recognized by some proteins, such as the kinase PINK1. Here we show that there is structural dynamic heterogeneity in the two ubiquitin moieties of K48-linked diubiquitin by NMR spectroscopic analyses. Our analyses capture subunit-asymmetric structural fluctuations that are not directly related to the closed-to-open transition of the two ubiquitin moieties in diubiquitin. Strikingly, these newly identified heterogeneous structural fluctuations may be linked to an increase in susceptibility to phosphorylation by PINK1. Coupled with the fact that there are almost no differences in static tertiary structure among ubiquitin moieties in a chain, the observed subunit-specific structural fluctuations may be an important factor that distinguishes individual ubiquitin moieties in a chain, thereby aiding both efficiency and specificity in post-translational modifications.


Asunto(s)
Poliubiquitina/química , Proteínas Quinasas/química , Procesamiento Proteico-Postraduccional , Humanos , Modelos Moleculares , Fosforilación , Poliubiquitina/metabolismo , Unión Proteica , Conformación Proteica , Proteínas Quinasas/metabolismo
13.
Magn Reson (Gott) ; 2(1): 33-48, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37904782

RESUMEN

We demonstrate room-temperature 13C hyperpolarization by dynamic nuclear polarization (DNP) using optically polarized triplet electron spins in two polycrystalline systems: pentacene-doped [carboxyl-13C] benzoic acid and microdiamonds containing nitrogen-vacancy (NV-) centers. For both samples, the integrated solid effect (ISE) is used to polarize the 13C spin system in magnetic fields of 350-400 mT. In the benzoic acid sample, the 13C spin polarization is enhanced by up to 0.12 % through direct electron-to-13C polarization transfer without performing dynamic 1H polarization followed by 1H-13C cross-polarization. In addition, the ISE has been successfully applied to polarize naturally abundant 13C spins in a microdiamond sample to 0.01 %. To characterize the buildup of the 13C polarization, we discuss the efficiencies of direct polarization transfer between the electron and 13C spins as well as that of 13C-13C spin diffusion, examining various parameters which are beneficial or detrimental for successful bulk dynamic 13C polarization.

14.
ACS Meas Sci Au ; 1(1): 20-26, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36785732

RESUMEN

Determination of optimal measurement parameters is essential for measurement experiments. They can be manually optimized if the linear correlation between them and the corresponding signal quality is known or easily determinable. However, in practice, this correlation is often nonlinear and not known a priori; hence, complicated trial and error procedures are employed for finding optimal parameters while avoiding local optima. In this work, we propose a novel approach based on machine learning for optimizing multiple measurement parameters, which nonlinearly influence the signal quality. Optically detected magnetic resonance measurements of nitrogen-vacancy centers in fluorescent nanodiamonds were used as a proof-of-concept system. We constructed a suitable dataset of optically detected magnetic resonance spectra for predicting the optimal laser and microwave powers that deliver the highest contrast and signal-to-noise ratio values by means of linear regression, neural networks, and random forests. The model developed by the considered neural network turned out to have a coefficient of determination significantly higher than that of the other methods. The proposed method thus provided a novel approach for the rapid setting of measurement parameters that influence the signal quality in a nonlinear way, opening a gate for fields like nuclear magnetic resonance, electron paramagnetic resonance, and fluorescence microscopy to benefit from it.

15.
Biochem Biophys Res Commun ; 529(2): 418-424, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32703445

RESUMEN

Ubiquitination is one of the major post-translational modifications and entails conjugation of ubiquitin molecules to target proteins. To make free ubiquitin molecules available for conjugation, in cells ubiquitin is not only synthesized de novo, but is also provided by cleaving off existing conjugated ubiquitin molecules, so-called deubiquitination reaction. Therefore, intracellular ubiquitin molecules are thought to be recycled, but the recycling frequency remains elusive. The main reason for the lack of such mechanistic details is that the original and recycled ubiquitin molecules are indistinguishable in their chemical and physical properties. To tackle this issue, here we applied 18O-labeling to trace how ubiquitin is recycled in a simultaneous ubiquitination/deubiquitination reaction (ubiquitin cycle reaction). Because deubiquitination is a hydrolysis reaction, the two 16O atoms of the C-terminal carboxy group of a ubiquitin molecule can be exchanged with 18O atoms by deubiquitination in 18O-labeled aqueous solution. By using quantitative mass spectrometry, we detected 18O atom incorporation into the C-terminal carboxy group of ubiquitin in the course of a deubiquitination reaction, in addition, we were able to quantify the 18O-incorporation in a ubiquitin cycle reaction. Unexpectedly, kinetic analysis suggested that ubiquitination reactivity was accelerated in the presence of a deubiquitinating enzyme. Collectively, we have established a quantitative method to trace ubiquitin cycle reactions by analyzing deubiquitination-associated 18O-incorporation into ubiquitin.


Asunto(s)
Ubiquitinación , Humanos , Cinética , Espectrometría de Masas/métodos , Isótopos de Oxígeno/análisis , Isótopos de Oxígeno/metabolismo , Ubiquitina/análisis , Ubiquitina/metabolismo
16.
J Am Chem Soc ; 142(16): 7542-7554, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32285668

RESUMEN

The rotation of an object cannot be fully tracked without understanding a set of three angles, namely, roll, pitch, and yaw. Tracking these angles as a three-degrees-of-freedom (3-DoF) rotation is a fundamental measurement, facilitating, for example, attitude control of a ship, image stabilization to reduce camera shake, and self-driving cars. Until now, however, there has been no method to track 3-DoF rotation to measure nanometer-scale dynamics in biomolecules and live cells. Here we show that 3-DoF rotation of biomolecules can be visualized via nitrogen-vacancy centers in a fluorescent nanodiamond using a tomographic vector magnetometry technique. We demonstrate application of the method to three different types of biological systems. First, we tracked the rotation of a single molecule of the motor protein F1-ATPase by attaching a nanodiamond to the γ-subunit. We visualized the 3-step rotation of the motor in 3D space and, moreover, a delay of ATP binding or ADP release step in the catalytic reaction. Second, we attached a nanodiamond to a membrane protein in live cells to report on cellular membrane dynamics, showing that 3D rotational motion of the membrane protein correlates with intracellular cytoskeletal density. Last, we used the method to track nonrandom motions in the intestine of Caenorhabditis elegans. Collectively, our findings show that the method can record nanoscale 3-DoF rotation in vitro, in cells, and even in vivo. 3-DoF rotation tracking introduces a new perspective on microscopic biological samples, revealing in greater detail the functional mechanisms due to nanoscale dynamics in molecules and cells.


Asunto(s)
Imagenología Tridimensional/métodos , Nanoestructuras/química , Algoritmos , Rotación
17.
Biochim Biophys Acta Gen Subj ; 1864(2): 129354, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31071412

RESUMEN

BACKGROUND: Nanodiamonds (NDs) provide a unique multitasking system for drug delivery and fluorescent imaging in biological environments. Owing to their quantum properties, NDs are expected to be employed as multifunctional probes in the future for the accurate visualization of biophysical parameters such as temperature and magnetic fields. However, the use of NDs for the selective targeting of the biomolecules of interest within a complicated biological system remains a challenge. One of the most promising solutions is the appropriate surface design of NDs based on organic chemistry and biochemistry. The engineered NDs have high biocompatibility and dispersibility in a biological environment and hence undergo cellular uptake through specific pathways. SCOPE OF REVIEW: This review focuses on the selective targeting of NDs for biomedical and biophysical applications from the viewpoint of ND surface functionalizations and modifications. These pretreatments make possible the specific targeting of biomolecules of interest on or in a cell by NDs via a designed biochemical route. MAJOR CONCLUSIONS: The surface of NDs is covalently or noncovalently modified with silica, polymers, or biomolecules to reshape them, control their size, and enhance the colloidal stability and biomolecular selectivity toward the biomolecules of interest. Electroporation, chemical treatment, injection, or endocytosis are the methods generally adopted to introduce NDs into living cells. The pathway, efficiency, and the cell viability depend on the selected method. GENERAL SIGNIFICANCE: In the biomedical field, the surface modification facilitates specific delivery of a drug, leading to a higher therapeutic efficacy. In biophysical applications, the surface modification paves the way for the accurate measurement of physical parameters to gain a better understanding of various cell functions.


Asunto(s)
Portadores de Fármacos , Nanodiamantes/química , Nanotecnología/métodos , Animales , Materiales Biocompatibles/química , Membrana Celular/química , Supervivencia Celular , Endocitosis , Humanos , Lípidos/química , Nanopartículas/química , Polímeros/química , Dióxido de Silicio/química , Electricidad Estática , Propiedades de Superficie
18.
Biochim Biophys Acta Gen Subj ; 1864(2): 129383, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31201838

RESUMEN

In living cells, biomacromolecules are exposed to a highly crowded environment. The cytoplasm, the nucleus, and other organelles are highly viscous fluids that differ from dilute in vitro conditions. Viscosity, a measure of fluid internal friction, directly affects the forces that act on immersed macromolecules. Although active motion of this viscous fluid - cytoplasmic streaming - occurs in many plant and animal cells, the effect of fluid motion (flow) on biomolecules is rarely discussed. Recently NMR experiments that apply a shearing flow in situ have been used for protein studies. While these NMR experiments have succeeded in spectroscopically tracking protein aggregation in real time, they do not provide a visual picture of protein motion under shear. To fill this gap, here we have used molecular dynamics simulations to study the motion of three proteins of different size and shape in a simple shearing flow. The proteins exhibit a superposition of random diffusion and shear-flow-induced rotational motion. Random rotational diffusion dominates at lower shear stresses, whereas an active "rolling motion" along the axis of the applied flow occurs at higher shear stress. Even larger shear stresses perturb protein secondary structure elements resulting in local and global unfolding. Apart from shear-induced unfolding, our results imply that, in an ideal Couette flow field biomolecules undergo correlated motion, which should enhance the probability of inter-molecular interaction and aggregation. Connecting biomolecular simulation with experiments applying shear flow in situ appears to be a promising strategy to study protein alignment, deformation, and dynamics under shear.


Asunto(s)
Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Proteínas/química , Núcleo Celular/química , Citoplasma/química , Difusión , Humanos , Hidrodinámica , Movimiento (Física) , Probabilidad , Desnaturalización Proteica , Mapeo de Interacción de Proteínas , Resistencia al Corte , Estrés Mecánico , Superóxido Dismutasa-1/química , Viscosidad
19.
ACS Nano ; 13(10): 11726-11732, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31538479

RESUMEN

Nanoscale measurements provide insight into the nano world. For instance, nanometric spatiotemporal distribution of intracellular pH is regulated by and regulates a variety of biological processes. However, there is no general method to fabricate nanoscale pH sensors. Here, we, to endow pH-sensing functions, tailor the surface properties of a fluorescent nanodiamond (FND) containing nitrogen-vacancy centers (NV centers) by coating the FND with an ionic chemical layer. The longitudinal relaxation time T1 of the electron spins in the NV centers inside a nanodiamond modified by carboxyl groups on the particle surface was found to depend on ambient pH between pH 3 and pH 7, but not between pH 7 and pH 11. Therefore, a single particle of the carboxylated nanodiamond works as a nanometer-sized pH meter within a microscopic image and directly measures the nanometric local pH environment. Moreover, the pH dependence of an FND was changed by coating it with a polycysteine layer, which contains a multitude of thiol groups with higher pKa. The polycysteine-coated nanodiamond obtained a pH dependence between pH 7 and pH 11. The pH dependence of the FND was also observed in heavy water (D2O) buffers. This indicates that the pH dependence is not caused by magnetic noise induced by 1H nuclear spin fluctuations, but by electric noise induced by ion exchanges. Via our method, the sensitive pH range of the nanodiamond pH sensor can potentially be controlled by changing the ionic layer appropriately according to the target biological phenomena.


Asunto(s)
Técnicas Biosensibles/métodos , Nanopartículas/química , Concentración de Iones de Hidrógeno , Nanodiamantes/química , Péptidos/química
20.
J Am Soc Nephrol ; 30(9): 1587-1603, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31266820

RESUMEN

BACKGROUND: TRPC6 is a nonselective cation channel, and mutations of this gene are associated with FSGS. These mutations are associated with TRPC6 current amplitude amplification and/or delay of the channel inactivation (gain-of-function phenotype). However, the mechanism of the gain-of-function in TRPC6 activity has not yet been clearly solved. METHODS: We performed electrophysiologic, biochemical, and biophysical experiments to elucidate the molecular mechanism underlying calmodulin (CaM)-mediated Ca2+-dependent inactivation (CDI) of TRPC6. To address the pathophysiologic contribution of CDI, we assessed the actin filament organization in cultured mouse podocytes. RESULTS: Both lobes of CaM helped induce CDI. Moreover, CaM binding to the TRPC6 CaM-binding domain (CBD) was Ca2+-dependent and exhibited a 1:2 (CaM/CBD) stoichiometry. The TRPC6 coiled-coil assembly, which brought two CBDs into adequate proximity, was essential for CDI. Deletion of the coiled-coil slowed CDI of TRPC6, indicating that the coiled-coil assembly configures both lobes of CaM binding on two CBDs to induce normal CDI. The FSGS-associated TRPC6 mutations within the coiled-coil severely delayed CDI and often increased TRPC6 current amplitudes. In cultured mouse podocytes, FSGS-associated channels and CaM mutations led to sustained Ca2+ elevations and a disorganized cytoskeleton. CONCLUSIONS: The gain-of-function mechanism found in FSGS-causing mutations in TRPC6 can be explained by impairments of the CDI, caused by disruptions of TRPC's coiled-coil assembly which is essential for CaM binding. The resulting excess Ca2+ may contribute to structural damage in the podocytes.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Citoesqueleto/ultraestructura , Glomeruloesclerosis Focal y Segmentaria/genética , Canal Catiónico TRPC6/genética , Actinas/ultraestructura , Animales , Sitios de Unión , Calmodulina/genética , Mutación con Ganancia de Función , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Células HEK293 , Humanos , Ratones , Fenotipo , Podocitos , Dominios Proteicos , Canal Catiónico TRPC6/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...