Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3266, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627502

RESUMEN

DNA methyltransferase 3A (DNMT3A) and its catalytically inactive cofactor DNA methyltransferase 3-Like (DNMT3L) proteins form functional heterotetramers to deposit DNA methylation in mammalian germ cells. While both proteins have an ATRX-DNMT3-DNMT3L (ADD) domain that recognizes histone H3 tail unmethylated at lysine-4 (H3K4me0), the combined and differential roles of the domains in the two proteins have not been fully defined in vivo. Here we investigate DNA methylation landscapes in female and male germ cells derived from mice with loss-of-function amino acid substitutions in the ADD domains of DNMT3A and/or DNMT3L. Mutations in either the DNMT3A-ADD or the DNMT3L-ADD domain moderately decrease global CG methylation levels, but to different degrees, in both germ cells. Furthermore, when the ADD domains of both DNMT3A and DNMT3L lose their functions, the CG methylation levels are much more reduced, especially in oocytes, comparable to the impact of the Dnmt3a/3L knockout. In contrast, aberrant accumulation of non-CG methylation occurs at thousands of genomic regions in the double mutant oocytes and spermatozoa. These results highlight the critical role of the ADD-H3K4me0 binding in proper CG and non-CG methylation in germ cells and the various impacts of the ADD domains of the two proteins.


Asunto(s)
Metilación de ADN , ADN Metiltransferasa 3A , Animales , Femenino , Masculino , Ratones , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Células Germinativas/metabolismo , Histonas/metabolismo , Factores de Transcripción/metabolismo
2.
PLoS Genet ; 19(8): e1010855, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37527244

RESUMEN

Establishment of a proper DNA methylation landscape in mammalian oocytes is important for maternal imprinting and embryonic development. De novo DNA methylation in oocytes is mediated by the DNA methyltransferase DNMT3A, which has an ATRX-DNMT3-DNMT3L (ADD) domain that interacts with histone H3 tail unmethylated at lysine-4 (H3K4me0). The domain normally blocks the methyltransferase domain via intramolecular interaction and binding to histone H3K4me0 releases the autoinhibition. However, H3K4me0 is widespread in chromatin and the role of the ADD-histone interaction has not been studied in vivo. We herein show that amino-acid substitutions in the ADD domain of mouse DNMT3A cause dwarfism. Oocytes derived from homozygous females show mosaic loss of CG methylation and almost complete loss of non-CG methylation. Embryos derived from such oocytes die in mid-to-late gestation, with stochastic and often all-or-none-type CG-methylation loss at imprinting control regions and misexpression of the linked genes. The stochastic loss is a two-step process, with loss occurring in cleavage-stage embryos and regaining occurring after implantation. These results highlight an important role for the ADD domain in efficient, and likely processive, de novo CG methylation and pose a model for stochastic inheritance of epigenetic perturbations in germ cells to the next generation.


Asunto(s)
Metilación de ADN , Histonas , Humanos , Femenino , Ratones , Masculino , Animales , Embarazo , Histonas/metabolismo , Metilación de ADN/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Cromosomas Humanos Y , ADN Metiltransferasa 3A , Mosaicismo , Oocitos/metabolismo , Factores de Transcripción/genética , Metilasas de Modificación del ADN , Mamíferos/genética
3.
Andrology ; 11(4): 698-709, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36698249

RESUMEN

BACKGROUND: Adenosine deaminase domain containing 2 (ADAD2) is a testis-specific protein composed of a double-stranded RNA binding domain and a non-catalytic adenosine deaminase domain. A recent study showed that ADAD2 is indispensable for the male reproduction in mice. However, the detailed functions of ADAD2 remain elusive. OBJECTIVES: This study aimed to investigate the cause of male sterility in Adad2 mutant mice and to understand the molecular functions of ADAD2. MATERIALS AND METHODS: Adad2 homozygous mutant mouse lines, Adad2-/- and Adad2Δ/Δ , were generated by CRISPR/Cas9. Western blotting and immunohistochemistry were used to reveal the expression and subcellular localization of ADAD2. Co-immunoprecipitation tandem mass spectrometry was employed to determine the ADAD2-interacting proteins in mouse testes. RNA-sequencing analyses were carried out to analyze the transcriptome and PIWI-interacting RNA (piRNA) populations in wildtype and Adad2 mutant testes. RESULTS: Adad2-/- and Adad2Δ/Δ mice exhibit male-specific sterility because of abnormal spermiogenesis. ADAD2 interacts with multiple RNA-binding proteins involved in piRNA biogenesis, including MILI, MIWI, RNF17, and YTHDC2. ADAD2 co-localizes and forms novel granules with RNF17 in spermatocytes. Ablation of ADAD2 impairs the formation of RNF17 granules, decreases the number of cluster-derived pachytene piRNAs, and increases expression of ping-pong-derived piRNAs. DISCUSSION AND CONCLUSION: In collaboration with RNF17 and other RNA-binding proteins in spermatocytes, ADAD2 directly or indirectly functions in piRNA biogenesis.


Asunto(s)
Adenosina Desaminasa , ARN de Interacción con Piwi , Animales , Masculino , Ratones , ARN Interferente Pequeño/genética , Adenosina Desaminasa/metabolismo , Espermatogénesis/genética , Testículo/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
4.
Genes Genet Syst ; 97(1): 3-14, 2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35431282

RESUMEN

Epigenetic marks including DNA methylation (DNAme) play a critical role in the transcriptional regulation of genes and retrotransposons. Defects in DNAme are detected in infertility, imprinting disorders and congenital diseases in humans, highlighting the broad importance of this epigenetic mark in both development and disease. While DNAme in terminally differentiated cells is stably propagated following cell division by the maintenance DNAme machinery, widespread erasure and subsequent de novo establishment of this epigenetic mark occur early in embryonic development as well as in germ cell development. Combined with deep sequencing, low-input methods that have been developed in the past several years have enabled high-resolution and genome-wide mapping of both DNAme and histone post-translational modifications (PTMs) in rare cell populations including developing germ cells. Epigenome studies using these novel methods reveal an unprecedented view of the dynamic chromatin landscape during germ cell development. Furthermore, integrative analysis of chromatin marks in normal germ cells and in those deficient in chromatin-modifying enzymes uncovers a critical interplay between histone PTMs and de novo DNAme in the germline. This review discusses work on mechanisms of the erasure and subsequent de novo DNAme in mouse germ cells as well as the outstanding questions relating to the regulation of the dynamic chromatin landscape in germ cells.


Asunto(s)
Cromatina , Metilación de ADN , Células Germinativas , Animales , Cromatina/genética , Cromatina/metabolismo , Cromatina/fisiología , Metilación de ADN/fisiología , Epigénesis Genética , Femenino , Células Germinativas/crecimiento & desarrollo , Células Germinativas/metabolismo , Células Germinativas/fisiología , Histonas/genética , Histonas/metabolismo , Ratones , Embarazo
5.
Development ; 149(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35029669

RESUMEN

In mammals, primordial germ cells (PGCs), the origin of the germ line, are specified from the epiblast at the posterior region where gastrulation simultaneously occurs, yet the functional relationship between PGC specification and gastrulation remains unclear. Here, we show that OVOL2, a transcription factor conserved across the animal kingdom, balances these major developmental processes by repressing the epithelial-to-mesenchymal transition (EMT) that drives gastrulation and the upregulation of genes associated with PGC specification. Ovol2a, a splice variant encoding a repressor domain, directly regulates EMT-related genes and, consequently, induces re-acquisition of potential pluripotency during PGC specification, whereas Ovol2b, another splice variant missing the repressor domain, directly upregulates genes associated with PGC specification. Taken together, these results elucidate the molecular mechanism underlying allocation of the germ line among epiblast cells differentiating into somatic cells through gastrulation. This article has an associated 'The people behind the papers' interview.


Asunto(s)
Desarrollo Embrionario/genética , Gastrulación/genética , Células Germinativas/metabolismo , Factores de Transcripción/metabolismo , Animales , Cadherinas/genética , Cadherinas/metabolismo , Linaje de la Célula , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Transición Epitelial-Mesenquimal/genética , Femenino , Células Germinativas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Regulación hacia Arriba , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
6.
Sex Dev ; 16(5-6): 365-387, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36702107

RESUMEN

BACKGROUND: DNA methylation (DNAme) and histone posttranslational modifications (PTMs) play an integral role in the transcriptional regulation of specific sets of genes and retrotransposons. In turn, these chromatin marks are essential for cellular reprogramming, including during germline development. While DNAme is stably propagated in most somatic tissues, this epigenetic mark undergoes cycles of widespread erasure and re-establishment in the early embryo as well as in the germline. SUMMARY: De novo DNAme occurs at distinct developmental stages in male and female germ cells; before birth in prospermatogonia (PSG) and after birth in growing oocytes. Furthermore, while only ∼40% of the mouse genome is methylated in mature oocytes, ∼80% of the genome is methylated in mature sperm. Here, we review recent epigenome studies which reveal a complex interplay between histone PTMs and de novo DNAme in shaping the sexually dimorphic profiles of DNAme observed in mature gametes in the mouse, including in intergenic regions as well as at imprinted gametic differentially methylated regions (gDMRs). We discuss the dynamics and distribution of key histone PTMs in male and female germ cells, including H3K36me2/me3, H3K4me3, and H3K27me3, and the implications of positive and negative crosstalk between these PTMs and the DNAme machinery. Finally, we reflect on how the sex-specific epigenetic landscapes observed in the mouse germline impact transcriptional regulation in both the gametes and the early embryo. KEY MESSAGES: Investigation of the roles of chromatin modifying enzymes and the interplay between the chromatin marks that they deposit in germ cells has been facilitated by analyses of conventional or germline-specific knockout mice, combined with low-input genome-wide profiling methods that have been developed in recent years. While clearly informative, these findings generally reflect "snapshots" of chromatin states derived from analyses of cells analyzed in bulk at a specific period in development. Technological advances and novel experimental models will be required to further refine our understanding of the underlying mechanism and order of establishment of chromatin marks and the impact of sexually dimorphic epigenetic patterning on transcription and other nuclear processes in germ cells, the early embryo and beyond.

7.
Nat Commun ; 12(1): 7020, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857746

RESUMEN

Silencing of a subset of germline genes is dependent upon DNA methylation (DNAme) post-implantation. However, these genes are generally hypomethylated in the blastocyst, implicating alternative repressive pathways before implantation. Indeed, in embryonic stem cells (ESCs), an overlapping set of genes, including germline "genome-defence" (GGD) genes, are upregulated following deletion of the H3K9 methyltransferase SETDB1 or subunits of the non-canonical PRC1 complex PRC1.6. Here, we show that in pre-implantation embryos and naïve ESCs (nESCs), hypomethylated promoters of germline genes bound by the PRC1.6 DNA-binding subunits MGA/MAX/E2F6 are enriched for RING1B-dependent H2AK119ub1 and H3K9me3. Accordingly, repression of these genes in nESCs shows a greater dependence on PRC1.6 than DNAme. In contrast, GGD genes are hypermethylated in epiblast-like cells (EpiLCs) and their silencing is dependent upon SETDB1, PRC1.6/RING1B and DNAme, with H3K9me3 and DNAme establishment dependent upon MGA binding. Thus, GGD genes are initially repressed by PRC1.6, with DNAme subsequently engaged in post-implantation embryos.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factor de Transcripción E2F6/genética , Regulación del Desarrollo de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Proteínas del Grupo Polycomb/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Metilación de ADN , Factor de Transcripción E2F6/metabolismo , Implantación del Embrión , Embrión de Mamíferos , Epigénesis Genética , Femenino , Silenciador del Gen , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
8.
Development ; 148(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34128976

RESUMEN

5,10-Methylenetetrahydrofolate reductase (MTHFR) is a crucial enzyme in the folate metabolic pathway with a key role in generating methyl groups. As MTHFR deficiency impacts male fertility and sperm DNA methylation, there is the potential for epimutations to be passed to the next generation. Here, we assessed whether the impact of MTHFR deficiency on testis morphology and sperm DNA methylation is exacerbated across generations in mouse. Although MTHFR deficiency in F1 fathers has only minor effects on sperm counts and testis weights and histology, F2 generation sons show further deterioration in reproductive parameters. Extensive loss of DNA methylation is observed in both F1 and F2 sperm, with >80% of sites shared between generations, suggestive of regions consistently susceptible to MTHFR deficiency. These regions are generally methylated during late embryonic germ cell development and are enriched in young retrotransposons. As retrotransposons are resistant to reprogramming of DNA methylation in embryonic germ cells, their hypomethylated state in the sperm of F1 males could contribute to the worsening reproductive phenotype observed in F2 MTHFR-deficient males, compatible with the intergenerational passage of epimutations.


Asunto(s)
Metilación de ADN , Metilenotetrahidrofolato Reductasa (NADPH2)/deficiencia , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Reproducción/fisiología , Retroelementos/genética , Animales , Epigenómica , Padre , Femenino , Ácido Fólico/metabolismo , Células Germinativas , Homocistinuria , Masculino , Ratones , Ratones Endogámicos C57BL , Espasticidad Muscular , Trastornos Psicóticos , Espermatozoides/metabolismo
9.
PLoS Genet ; 17(5): e1009570, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34048432

RESUMEN

DNA methylation at CG sites is important for gene regulation and embryonic development. In mouse oocytes, de novo CG methylation requires preceding transcription-coupled histone mark H3K36me3 and is mediated by a DNA methyltransferase DNMT3A. DNMT3A has a PWWP domain, which recognizes H3K36me2/3, and heterozygous mutations in this domain, including D329A substitution, cause aberrant CG hypermethylation of regions marked by H3K27me3 in somatic cells, leading to a dwarfism phenotype. We herein demonstrate that D329A homozygous mice show greater CG hypermethylation and severer dwarfism. In oocytes, D329A substitution did not affect CG methylation of H3K36me2/3-marked regions, including maternally methylated imprinting control regions; rather, it caused aberrant hypermethylation in regions lacking H3K36me2/3, including H3K27me3-marked regions. Thus, the role of the PWWP domain in CG methylation seems similar in somatic cells and oocytes; however, there were cell-type-specific differences in affected regions. The major satellite repeat was also hypermethylated in mutant oocytes. Contrary to the CA hypomethylation in somatic cells, the mutation caused hypermethylation at CH sites, including CA sites. Surprisingly, oocytes expressing only the mutated protein could support embryonic and postnatal development. Our study reveals that the DNMT3A PWWP domain is important for suppressing aberrant CG hypermethylation in both somatic cells and oocytes but that D329A mutation has little impact on the developmental potential of oocytes.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Mutación , Oocitos/metabolismo , Dominios Proteicos , Sustitución de Aminoácidos , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Femenino , Histonas/química , Histonas/metabolismo , Masculino , Ratones , Fenotipo , Dominios Proteicos/genética , Transcriptoma
10.
Nat Genet ; 52(10): 1088-1098, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32929285

RESUMEN

De novo DNA methylation (DNAme) in mammalian germ cells is dependent on DNMT3A and DNMT3L. However, oocytes and spermatozoa show distinct patterns of DNAme. In mouse oocytes, de novo DNAme requires the lysine methyltransferase (KMTase) SETD2, which deposits H3K36me3. We show here that SETD2 is dispensable for de novo DNAme in the male germline. Instead, the lysine methyltransferase NSD1, which broadly deposits H3K36me2 in euchromatic regions, plays a critical role in de novo DNAme in prospermatogonia, including at imprinted genes. However, males deficient in germline NSD1 show a more severe defect in spermatogenesis than Dnmt3l-/- males. Notably, unlike DNMT3L, NSD1 safeguards a subset of genes against H3K27me3-associated transcriptional silencing. In contrast, H3K36me2 in oocytes is predominantly dependent on SETD2 and coincides with H3K36me3. Furthermore, females with NSD1-deficient oocytes are fertile. Thus, the sexually dimorphic pattern of DNAme in mature mouse gametes is orchestrated by distinct profiles of H3K36 methylation.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , N-Metiltransferasa de Histona-Lisina/genética , Espermatogénesis/genética , Animales , Metilación de ADN/genética , ADN Metiltransferasa 3A , Femenino , N-Metiltransferasa de Histona-Lisina/deficiencia , Histonas/genética , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Proteínas del Grupo Polycomb/genética , Espermatozoides/crecimiento & desarrollo , Espermatozoides/metabolismo , Factores de Transcripción/genética
11.
Genes Cells ; 25(1): 54-64, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31733167

RESUMEN

Monoallelic gene expression occurs in various mammalian cells and can be regulated genetically, epigenetically and/or stochastically. We identified 145 monoallelically expressed genes (MoEGs), including seven known imprinted genes, in mouse embryonic stem cells (ESCs) derived from reciprocal F1 hybrid blastocysts and cultured in 2i/LIF. As all MoEGs except for the imprinted genes were expressed in a genetic-origin-dependent manner, we focused on this class of MoEGs for mechanistic studies. We showed that a majority of the genetic-origin-dependent MoEGs identified in 2i/LIF ESCs remain monoallelically expressed in serum/LIF ESCs, but become more relaxed or even biallelically expressed upon differentiation. These MoEGs and their regulatory regions were highly enriched for single nucleotide polymorphisms. In addition, some MoEGs were associated with retrotransposon insertions/deletions, consistent with the fact that certain retrotransposons act as regulatory elements in pluripotent stem cells. Interestingly, most MoEGs showed allelic differences in enrichment of histone H3K27me and H3K4me marks, linking allelic epigenetic differences and monoallelic expression. In contrast, there was little or no allelic difference in CpG methylation or H3K9me. Taken together, our study highlights the impact of genetic variation including single nucleotide polymorphisms and retrotransposon insertions/deletions on monoallelic epigenetic marks and expression in ESCs.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Células Madre Embrionarias de Ratones/metabolismo , Transcriptoma/genética , Alelos , Animales , Diferenciación Celular/genética , Línea Celular , Metilación de ADN/genética , Células Madre Embrionarias/metabolismo , Epigénesis Genética/genética , Epigenómica/métodos , Femenino , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Impresión Genómica/genética , Masculino , Ratones , Ratones Endogámicos , Células Madre Pluripotentes/metabolismo
12.
Science ; 362(6412): 356-360, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30237246

RESUMEN

Human in vitro gametogenesis may transform reproductive medicine. Human pluripotent stem cells (hPSCs) have been induced into primordial germ cell-like cells (hPGCLCs); however, further differentiation to a mature germ cell has not been achieved. Here, we show that hPGCLCs differentiate progressively into oogonia-like cells during a long-term in vitro culture (approximately 4 months) in xenogeneic reconstituted ovaries with mouse embryonic ovarian somatic cells. The hPGCLC-derived oogonia display hallmarks of epigenetic reprogramming-genome-wide DNA demethylation, imprint erasure, and extinguishment of aberrant DNA methylation in hPSCs-and acquire an immediate precursory state for meiotic recombination. Furthermore, the inactive X chromosome shows a progressive demethylation and reactivation, albeit partially. These findings establish the germline competence of hPSCs and provide a critical step toward human in vitro gametogenesis.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Células Madre Pluripotentes Inducidas/citología , Oogénesis , Oogonios/citología , Ovario/crecimiento & desarrollo , Metilación de ADN , Epigénesis Genética , Femenino , Humanos
13.
Nat Commun ; 9(1): 3331, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30127397

RESUMEN

De novo DNA methylation (DNAme) during mouse oogenesis occurs within transcribed regions enriched for H3K36me3. As many oocyte transcripts originate in long terminal repeats (LTRs), which are heterogeneous even between closely related mammals, we examined whether species-specific LTR-initiated transcription units (LITs) shape the oocyte methylome. Here we identify thousands of syntenic regions in mouse, rat, and human that show divergent DNAme associated with private LITs, many of which initiate in lineage-specific LTR retrotransposons. Furthermore, CpG island (CGI) promoters methylated in mouse and/or rat, but not human oocytes, are embedded within rodent-specific LITs and vice versa. Notably, at a subset of such CGI promoters, DNAme persists on the maternal genome in fertilized and parthenogenetic mouse blastocysts or in human placenta, indicative of species-specific epigenetic inheritance. Polymorphic LITs are also responsible for disparate DNAme at promoter CGIs in distantly related mouse strains, revealing that LITs also promote intra-species divergence in CGI DNAme.


Asunto(s)
Metilación de ADN/genética , Patrón de Herencia/genética , Oocitos/metabolismo , Retroelementos/genética , Secuencias Repetidas Terminales/genética , Transcripción Genética , Animales , Islas de CpG/genética , ADN Intergénico/genética , Fertilización/genética , Regulación de la Expresión Génica , Humanos , Mamíferos/metabolismo , Ratones Endogámicos C57BL , Polimorfismo Genético , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Especificidad de la Especie , Sintenía/genética
14.
Cell Stem Cell ; 22(1): 50-63.e6, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29249463

RESUMEN

Trophoblast cells play an essential role in the interactions between the fetus and mother. Mouse trophoblast stem (TS) cells have been derived and used as the best in vitro model for molecular and functional analysis of mouse trophoblast lineages, but attempts to derive human TS cells have so far been unsuccessful. Here we show that activation of Wingless/Integrated (Wnt) and EGF and inhibition of TGF-ß, histone deacetylase (HDAC), and Rho-associated protein kinase (ROCK) enable long-term culture of human villous cytotrophoblast (CT) cells. The resulting cell lines have the capacity to give rise to the three major trophoblast lineages, which show transcriptomes similar to those of the corresponding primary trophoblast cells. Importantly, equivalent cell lines can be derived from human blastocysts. Our data strongly suggest that the CT- and blastocyst-derived cell lines are human TS cells, which will provide a powerful tool to study human trophoblast development and function.


Asunto(s)
Células Madre/citología , Trofoblastos/citología , Animales , Blastocisto/citología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Metilación de ADN/genética , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones SCID , Células Madre/metabolismo , Transcriptoma/genética , Trofoblastos/metabolismo
15.
EMBO J ; 36(13): 1888-1907, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28559416

RESUMEN

The expansion of primordial germ cells (PGCs), the precursors for the oocytes and spermatozoa, is a key challenge in reproductive biology/medicine. Using a chemical screening exploiting PGC-like cells (PGCLCs) induced from mouse embryonic stem cells (ESCs), we here identify key signaling pathways critical for PGCLC proliferation. We show that the combinatorial application of Forskolin and Rolipram, which stimulate cAMP signaling via different mechanisms, expands PGCLCs up to ~50-fold in culture. The expanded PGCLCs maintain robust capacity for spermatogenesis, rescuing the fertility of infertile mice. Strikingly, during expansion, PGCLCs comprehensively erase their DNA methylome, including parental imprints, in a manner that precisely recapitulates genome-wide DNA demethylation in gonadal germ cells, while essentially maintaining their identity as sexually uncommitted PGCs, apparently through appropriate histone modifications. By establishing a paradigm for PGCLC expansion, our system reconstitutes the epigenetic "blank slate" of the germ line, an immediate precursory state for sexually dimorphic differentiation.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Células Madre Embrionarias/fisiología , Epigénesis Genética , Células Germinativas/crecimiento & desarrollo , Animales , Colforsina/metabolismo , Células Germinativas/efectos de los fármacos , Ratones , Rolipram/metabolismo , Transducción de Señal
16.
BMC Genomics ; 18(1): 31, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-28056787

RESUMEN

BACKGROUND: Methylation of cytosine in genomic DNA is a well-characterized epigenetic modification involved in many cellular processes and diseases. Whole-genome bisulfite sequencing (WGBS), such as MethylC-seq and post-bisulfite adaptor tagging sequencing (PBAT-seq), uses the power of high-throughput DNA sequencers and provides genome-wide DNA methylation profiles at single-base resolution. However, the accuracy and consistency of WGBS outputs in relation to the operating conditions of high-throughput sequencers have not been explored. RESULTS: We have used the Illumina HiSeq platform for our PBAT-based WGBS, and found that different versions of HiSeq Control Software (HCS) and Real-Time Analysis (RTA) installed on the system provided different global CpG methylation levels (approximately 5% overall difference) for the same libraries. This problem was reproduced multiple times with different WGBS libraries and likely to be associated with the low sequence diversity of bisulfite-converted DNA. We found that HCS was the major determinant in the observed differences. To determine which version of HCS is most suitable for WGBS, we used substrates with predetermined CpG methylation levels, and found that HCS v2.0.5 is the best among the examined versions. HCS v2.0.12 showed the poorest performance and provided artificially lower CpG methylation levels when 5-methylcytosine is read as guanine (first read of PBAT-seq and second read of MethylC-seq). In addition, paired-end sequencing of low diversity libraries using HCS v2.2.38 or the latest HCS v2.2.58 was greatly affected by cluster densities. CONCLUSIONS: Software updates in the Illumina HiSeq platform can affect the outputs from low-diversity sequencing libraries such as WGBS libraries. More recent versions are not necessarily the better, and HCS v2.0.5 is currently the best for WGBS among the examined HCS versions. Thus, together with other experimental conditions, special care has to be taken on this point when CpG methylation levels are to be compared between different samples by WGBS.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Epigenómica , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , 5-Metilcitosina , Animales , Línea Celular , Análisis por Conglomerados , Islas de CpG , Epigenómica/métodos , Humanos , Ratones , Análisis de Secuencia de ADN
17.
Cell Rep ; 17(10): 2789-2804, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27926879

RESUMEN

The in vitro derivation and propagation of spermatogonial stem cells (SSCs) from pluripotent stem cells (PSCs) is a key goal in reproductive science. We show here that when aggregated with embryonic testicular somatic cells (reconstituted testes), primordial germ cell-like cells (PGCLCs) induced from mouse embryonic stem cells differentiate into spermatogonia-like cells in vitro and are expandable as cells that resemble germline stem cells (GSCs), a primary cell line with SSC activity. Remarkably, GSC-like cells (GSCLCs), but not PGCLCs, colonize adult testes and, albeit less effectively than GSCs, contribute to spermatogenesis and fertile offspring. Whole-genome analyses reveal that GSCLCs exhibit aberrant methylation at vulnerable regulatory elements, including those critical for spermatogenesis, which may restrain their spermatogenic potential. Our study establishes a strategy for the in vitro derivation of SSC activity from PSCs, which, we propose, relies on faithful epigenomic regulation.


Asunto(s)
Células Madre Germinales Adultas/citología , Células Madre Pluripotentes/citología , Espermatogénesis/genética , Testículo/citología , Animales , Proliferación Celular/genética , Masculino , Ratones , Espermatogonias/citología
18.
Am J Hum Genet ; 99(5): 1045-1058, 2016 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-27843122

RESUMEN

DNA methylation is globally reprogrammed after fertilization, and as a result, the parental genomes have similar DNA-methylation profiles after implantation except at the germline differentially methylated regions (gDMRs). We and others have previously shown that human blastocysts might contain thousands of transient maternally methylated gDMRs (transient mDMRs), whose maternal methylation is lost in embryonic tissues after implantation. In this study, we performed genome-wide allelic DNA methylation analyses of purified trophoblast cells from human placentas and, surprisingly, found that more than one-quarter of the transient-in-embryo mDMRs maintained their maternally biased DNA methylation. RNA-sequencing-based allelic expression analyses revealed that some of the placenta-specific mDMRs were associated with expression of imprinted genes (e.g., TIGAR, SLC4A7, PROSER2-AS1, and KLHDC10), and three imprinted gene clusters were identified. This approach also identified some X-linked gDMRs. Comparisons of the data with those from other mammals revealed that genomic imprinting in the placenta is highly variable. These findings highlight the incomplete erasure of germline DNA methylation in the human placenta; understanding this erasure is important for understanding normal placental development and the pathogenesis of developmental disorders with imprinting effects.


Asunto(s)
Alelos , Perfilación de la Expresión Génica , Impresión Genómica , Placenta/metabolismo , Proteínas Reguladoras de la Apoptosis , Blastocisto/citología , Blastocisto/metabolismo , Metilación de ADN , Exoma , Femenino , Genes Ligados a X , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Anotación de Secuencia Molecular , Monoéster Fosfórico Hidrolasas , Placenta/citología , Polimorfismo de Nucleótido Simple , Embarazo , Análisis de Secuencia de ARN , Simportadores de Sodio-Bicarbonato/genética , Simportadores de Sodio-Bicarbonato/metabolismo , Trofoblastos/citología , Trofoblastos/metabolismo
19.
Dev Cell ; 39(1): 87-103, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27642137

RESUMEN

Specification of primordial germ cells (PGCs) activates epigenetic reprogramming for totipotency, the elucidation of which remains a fundamental challenge. Here, we uncover regulatory principles for DNA methylation reprogramming during in vitro PGC specification, in which mouse embryonic stem cells (ESCs) are induced into epiblast-like cells (EpiLCs) and then PGC-like cells (PGCLCs). While ESCs reorganize their methylome to form EpiLCs, PGCLCs essentially dilute the EpiLC methylome at constant, yet different, rates between unique sequence regions and repeats. ESCs form hypomethylated domains around pluripotency regulators for their activation, whereas PGCLCs create demethylation-sensitive domains around developmental regulators by accumulating abundant H3K27me3 for their repression. Loss of PRDM14 globally upregulates methylation and diminishes the hypomethylated domains, but it preserves demethylation-sensitive domains. Notably, female ESCs form hypomethylated lamina-associated domains, while female PGCLCs effectively reverse such states into a more normal configuration. Our findings illuminate the unique orchestration of DNA methylation and histone modification reprogramming during PGC specification.


Asunto(s)
Reprogramación Celular/genética , Metilación de ADN/genética , Células Germinativas/citología , Células Germinativas/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Animales , Proteínas de Unión al ADN , Elementos de Facilitación Genéticos/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/citología , Histonas/metabolismo , Metaboloma , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Proteínas de Unión al ARN , Factores de Transcripción/metabolismo , Transcripción Genética
20.
Nat Cell Biol ; 18(2): 225-233, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26751286

RESUMEN

Zygotic epigenetic reprogramming entails genome-wide DNA demethylation that is accompanied by Tet methylcytosine dioxygenase 3 (Tet3)-driven oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC; refs 1-4). Here we demonstrate using detailed immunofluorescence analysis and ultrasensitive LC-MS-based quantitative measurements that the initial loss of paternal 5mC does not require 5hmC formation. Small-molecule inhibition of Tet3 activity, as well as genetic ablation, impedes 5hmC accumulation in zygotes without affecting the early loss of paternal 5mC. Instead, 5hmC accumulation is dependent on the activity of zygotic Dnmt3a and Dnmt1, documenting a role for Tet3-driven hydroxylation in targeting de novo methylation activities present in the early embryo. Our data thus provide further insights into the dynamics of zygotic reprogramming, revealing an intricate interplay between DNA demethylation, de novo methylation and Tet3-driven hydroxylation.


Asunto(s)
5-Metilcitosina/metabolismo , Reprogramación Celular , Citosina/análogos & derivados , Metilación de ADN , Epigénesis Genética , Cigoto/metabolismo , Animales , Biomarcadores/metabolismo , Cromatografía Liquida , Citosina/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Técnicas de Cultivo de Embriones , Fertilización In Vitro , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica , Cinética , Espectrometría de Masas , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...