Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 830, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992143

RESUMEN

Decidualization of the human endometrium is critical for establishing pregnancy and is entailed by differentiation of endometrial stromal cells (ESCs) into decidual cells. During decidualization, the actin cytoskeleton is dynamically reorganized for the ESCs' morphological and functional changes. Although actin dynamically alters its polymerized state upon external stimuli not only in the cytoplasm, but also in the nucleus, nuclear actin dynamics during decidualization have not been elucidated. Here, we show that nuclear actin was specifically assembled during decidualization of human ESCs. This decidualization-specific formation of nuclear actin filaments was disassembled following the withdrawal of the decidualization stimulus, suggesting its reversible process. Mechanistically, RNA-seq analyses revealed that the forced disassembly of nuclear actin resulted in the suppression of decidualization, accompanied with the abnormal upregulation of cell proliferation genes, leading to incomplete cell cycle arrest. CCAAT/enhancer-binding protein beta (C/EBPß), an important regulator for decidualization, was responsible for downregulation of the nuclear actin exporter, thus accelerating nuclear actin accumulation and its assembly for decidualization. Taken together, we demonstrate that decidualization-specific nuclear actin assembly induces cell cycle arrest for establishing the decidualized state of ESCs. We propose that not only the cytoplasmic actin, but also nuclear actin dynamics profoundly affect decidualization process in humans for ensuring pregnancy.


Asunto(s)
Actinas , Núcleo Celular , Decidua , Endometrio , Células del Estroma , Humanos , Femenino , Células del Estroma/metabolismo , Actinas/metabolismo , Endometrio/citología , Endometrio/metabolismo , Decidua/metabolismo , Decidua/citología , Núcleo Celular/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/genética , Embarazo , Diferenciación Celular , Proliferación Celular , Citoesqueleto de Actina/metabolismo
2.
Reprod Med Biol ; 23(1): e12580, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756693

RESUMEN

Purpose: Decidualization is an important event for embryo implantation and successful pregnancy. Impaired decidualization leads to implantation failure and miscarriage. However, it is unclear how often decidualization failure occurs in infertile women. By analyzing the endometrium at late-secretory phase, we investigated the incidence and pathogenesis of decidualization failure among infertile women. Methods: Endometrial dating was performed on the endometria obtained in the late-secretory phase from 33 infertile women. Endometrial dating of more than 2 days delay was taken as an indication of decidualization failure. The expression of essential transcription factors for decidualization (FOXO1, WT1, and C/EBPß) was examined by immunohistochemistry. Results: Among 32 cases, 20 cases (62.5%) showed decidualization failure. These patients tended to have a history of more frequent miscarriages than those without decidualization failure. The percentage of cells that immunostained positive for the expression of three transcription factors was significantly lower in the patients with decidualization failure than in those without decidualization failure. Serum progesterone levels measured in the mid- and late-secretory phase were not significantly different between the cases with and without decidualization failure. Conclusions: The incidence of decidualization failure is high in infertile women.

3.
Sci Rep ; 14(1): 7726, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565619

RESUMEN

Decidualization can be induced by culturing human endometrial stromal cells (ESCs) with several decidualization stimuli, such as cAMP, medroxyprogesterone acetate (MPA) or Estradiol (E2). However, it has been unclear how decidualized cells induced by different stimuli are different. We compared transcriptomes and cellular functions of decidualized ESCs induced by different stimuli (MPA, E2 + MPA, cAMP, and cAMP + MPA). We also investigated which decidualization stimulus induces a closer in vivo decidualization. Differentially expressed genes (DEGs) and altered cellular functions by each decidualization stimuli were identified by RNA-sequence and gene-ontology analysis. DEGs was about two times higher for stimuli that use cAMP (cAMP and cAMP + MPA) than for stimuli that did not use cAMP (MPA and E2 + MPA). cAMP-using stimuli altered the cellular functions including angiogenesis, inflammation, immune system, and embryo implantation whereas MPA-using stimuli (MPA, E2 + MPA, and cAMP + MPA) altered the cellular functions associated with insulin signaling. A public single-cell RNA-sequence data of the human endometrium was utilized to analyze in vivo decidualization. The altered cellular functions by in vivo decidualization were close to those observed by cAMP + MPA-induced decidualization. In conclusion, decidualized cells induced by different stimuli have different transcriptome and cellular functions. cAMP + MPA may induce a decidualization most closely to in vivo decidualization.


Asunto(s)
Endometrio , Acetato de Medroxiprogesterona , Femenino , Humanos , Células Cultivadas , Endometrio/metabolismo , Acetato de Medroxiprogesterona/farmacología , Células del Estroma/metabolismo , Expresión Génica , ARN/metabolismo , Decidua/metabolismo
4.
Reprod Med Biol ; 23(1): e12564, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38361634

RESUMEN

Purpose: We investigated the interactions between mural granulosa cells (MGCs) and cumulus granulosa cells (CGCs) during ovulation after the LH surge. Methods: We performed clustering, pseudotime, and interactome analyses utilizing reported single-cell RNA sequencing data of mouse ovary at 6 h after eCG-hCG injection. Results: Clustering analysis classified granulosa cells into two distinct populations, MGCs and CGCs. Pseudotime analysis divided granulosa cells into before and after the LH surge, and further divided them into two branches, the ovulatory MGCs and the ovulatory CGCs. Interactome analysis was performed to identify the interactions between MGCs and CGCs. Twenty-six interactions were acting from CGCs toward MGCs, involving ovulation and steroidogenesis. Thirty-six interactions were acting from MGCs toward CGCs, involving hyaluronan synthesis. There were 25 bidirectional interactions, involving the EGFR pathway. In addition, we found three novel interactions: Ephrins-Ephs pathway and Wnt-Lrp6 pathway from CGCs to MGCs, associated with steroidogenesis and lipid transport, respectively, and TGF-ß-TGFBR1 pathway from MGCs to CGCs, associated with hyaluronan synthesis. Conclusions: MGCs and CGCs interact with each other in the preovulatory follicle after the LH surge, and their interactions have roles in corpus luteum formation, oocyte maturation, and follicle rupture.

5.
Reprod Med Biol ; 22(1): e12548, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107653

RESUMEN

Purpose: To test the theory that invaginated ovarian surface epithelium and endometrial implants on the ovary form ovarian endometriomas. Methods: Adhesion sites of ovarian endometrioma on the peritoneum and consecutive ovarian endometrioma cyst wall, called non-adhesion sites, were histologically examined. DNA methylomes of the adhesion sites, non-adhesion sites, and blueberry spots were compared with those of ovary, endometrium, and peritoneum. Results: The non-adhesion sites showed an ovarian surface epithelium-like structure near the adhesion site, which continued to a columnar epithelium-like structure. Calretinin staining was strong in the ovarian surface epithelium-like structure but weak in the columnar epithelium-like structure. Estrogen receptors were absent in the ovarian surface epithelium-like structure, but present in the columnar epithelium-like structure. The adhesion sites had endometrial gland-like structures that expressed estrogen receptors. Analyses of DNA methylomes classified the non-adhesion sites and ovaries into the same group, suggesting that ovarian endometriomas originate from the ovarian surface epithelium. The adhesion sites, blueberry spots and peritoneum were classified in the same group, suggesting that the adhesion sites and blueberry spots originate from the peritoneum. Conclusions: The present results support the invagination theory. Ovarian endometriomas consist of invaginated ovarian surface epithelium with celomic metaplasia and endometrium implants on the peritoneum.

6.
Mol Hum Reprod ; 29(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37310913

RESUMEN

Human endometrial stromal cells (hESCs) undergo a differentiation process with dramatic changes in cell functions during the menstrual cycle, which is called decidualization. This is an important event for implantation of the embryo and successful pregnancy. Defective decidualization can cause implantation failure, miscarriage, and unexplained infertility. A number of genes are upregulated or downregulated during decidualization. Recent studies have shown that epigenetic mechanisms are involved in the regulation of decidualization-related genes and that histone modifications occur throughout the genome during decidualization. The present review focuses on the involvement of genome-wide histone modifications in dramatic changes in gene expression during decidualization. The main histone modifications are the increases of H3K27ac and H3K4me3, which activate transcription. C/EBPß works as a pioneer factor throughout the genome by recruiting p300. This is the main cause of the genome-wide acetylation of H3K27 during decidualization. Histone modifications were observed in both the proximal promoter and distal enhancer regions. Genome editing experiments show that the distal regions have transcriptional activities, which suggests that decidualization induces the interactions between proximal promoter and distal enhancer regions. Taken together, these findings show that gene regulation during decidualization is closely associated with genome-wide changes of histone modifications. This review provides new insights regarding the cases of implantation failure in terms of decidualization insufficiency owing to epigenetic dysregulation, and may lead to novel treatment options for women with implantation failure.


Asunto(s)
Decidua , Endometrio , Embarazo , Humanos , Femenino , Endometrio/metabolismo , Decidua/metabolismo , Código de Histonas/genética , Expresión Génica , Células del Estroma/metabolismo
7.
Endocr J ; 70(5): 465-472, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37081638

RESUMEN

Decidualization is a process of differentiation of human endometrial stromal cells (hESCs) accompanied by dramatic changes in cellular functions. This process is critical for embryo implantation and the establishment of pregnancy. Impairment of decidualization of hESCs leads to implantation failure, miscarriage, and unexplained infertility. The present review focuses on the metabolic changes in hESCs during decidualization. One of the changes taking place is in the glucose metabolism. Glucose uptake increases during decidualization because glucose is essential for the decidualization of hESCs. In hESCs, GLUT1 is highly expressed and involved in the increase of glucose uptake during decidualization. The up-regulation of GLUT1 is mediated by an epigenetic mechanism, which is regulated by CCAAT enhancer-binding protein ß (C/EBPß) and Wilms tumor 1 (WT1). Another metabolic change is in the lipid metabolism. Lipid accumulation in hESCs increases during decidualization. This increase is mediated by very low-density lipoprotein receptor (VLDLR). The up-regulation of VLDLR is regulated by WT1. In contrast to glucose, lipid is not essential for decidualization of hESCs. Endometrial cells have been implicated as important sources of nutrition for the embryo. hESCs may increase glucose and lipid storage so that they can supply them to the embryo during the implantation process. Taken together, decidualization is the process accompanied by metabolic changes, which may be associated with successful implantation.


Asunto(s)
Decidua , Metabolismo de los Lípidos , Embarazo , Femenino , Humanos , Decidua/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Glucosa/metabolismo , Endometrio , Células del Estroma/metabolismo , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...