Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 9(10)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652537

RESUMEN

NKX2-5 is a member of the homeobox-containing transcription factors critical in regulating tissue differentiation in development. Here, we report a role for NKX2-5 in vascular smooth muscle cell phenotypic modulation in vitro and in vascular remodeling in vivo. NKX2-5 is upregulated in scleroderma patients with pulmonary arterial hypertension. Suppression of NKX2-5 expression in smooth muscle cells halted vascular smooth muscle proliferation and migration, enhanced contractility, and blocked the expression of extracellular matrix genes. Conversely, overexpression of NKX2-5 suppressed the expression of contractile genes (ACTA2, TAGLN, CNN1) and enhanced the expression of matrix genes (COL1) in vascular smooth muscle cells. In vivo, conditional deletion of NKX2-5 attenuated blood vessel remodeling and halted the progression to hypertension in a mouse chronic hypoxia model. This study revealed that signals related to injury such as serum and low confluence, which induce NKX2-5 expression in cultured cells, is potentiated by TGF-ß and further enhanced by hypoxia. The effect of TGF-ß was sensitive to ERK5 and PI3K inhibition. Our data suggest a pivotal role for NKX2-5 in the phenotypic modulation of smooth muscle cells during pathological vascular remodeling and provide proof of concept for therapeutic targeting of NKX2-5 in vasculopathies.


Asunto(s)
Proteína Homeótica Nkx-2.5 , Músculo Liso Vascular , Remodelación Vascular , Animales , Ratones , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo , Humanos , Remodelación Vascular/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Masculino , Esclerodermia Sistémica/patología , Esclerodermia Sistémica/complicaciones , Esclerodermia Sistémica/metabolismo , Esclerodermia Sistémica/genética , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/patología , Hipertensión Arterial Pulmonar/etiología , Femenino , Factor de Crecimiento Transformador beta/metabolismo , Modelos Animales de Enfermedad , Proliferación Celular/genética , Persona de Mediana Edad , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/patología
2.
JVS Vasc Sci ; 5: 100194, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510939

RESUMEN

Objective: Toll-like receptors (TLRs) are key pattern recognition receptors in the innate immune system. In particular, the TLR4-mediated immune response has been implicated in ischemia-induced tissue injury. Mounting evidence supports a detrimental role of the innate immune system in the pathophysiology of skeletal muscle damage in patients with chronic limb-threatening ischemia (CLTI), in whom patient-oriented functional outcomes are poor. The overall aim of this study was to investigate the potential role of TLR4 in skeletal muscle dysfunction and damage in CLTI. Methods: The role of TLR4 in ischemic muscle was investigated by (1) studying TLR4 expression and distribution in human gastrocnemius muscle biopsies, (2) evaluating the functional consequences of TLR4 inhibition in myotubes derived from human muscle biopsies, and (3) assessing the therapeutic potential of modulating TLR4 signaling in ischemic muscle in a mouse hindlimb ischemia model. Results: TLR4 was found to be expressed in human muscle biopsies, with significant upregulation in samples from patients with CLTI. In vitro studies using cultured human myotubes demonstrated upregulation of TLR4 in ischemia, with activation of the downstream signaling pathway. Inhibition of TLR4 before ischemia was associated with reduced ischemia-induced apoptosis. Upregulation of TLR4 also occurred in ischemia in vivo and TLR4 inhibition was associated with decreased inflammatory cell infiltration and diminished apoptosis in the ischemic limb. Conclusions: TLR4 is upregulated and activated in ischemic skeletal muscle in patients with CLTI. Modulating TLR4 signaling in vitro and in vivo was associated with attenuation of ischemia-induced skeletal muscle damage. This strategy could be explored further for potential clinical application.

3.
Fish Shellfish Immunol ; 135: 108690, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36944415

RESUMEN

Microplastics (MPs) have attracted widespread attention as an emerging environmental pollutant. Especially in aquatic ecosystems, the harm of MPs to aquatic animals has increasingly become a severe environmental problem. In this study, we constructed a carp polystyrene microplastics (PS-MPs) exposure model to explore the damage and mechanism of PS-MPs exposure to carp myocardial tissue. The results of H&E, TUNEL, and AO/EB staining showed that PS-MPs exposure could induce inflammation, apoptosis, and necrosis in carp myocardial tissue and cardiomyocytes. In addition, our study explored the targeting relationship between PS-MPs and TLR4 and found that PS-MPs exposure could significantly increase the expression of TLR4 pathway-related factors. As the concentration of PS-MPs increased, the NF-κB pathway and inflammation-related factors increased dose-dependent. In addition, myocardial injury induced by exposure to PS-MPs was predominantly apoptotic, accompanied by necrosis. In short, our data suggest that PS-MPs cause damage to myocardial tissue via the TLR4\NF-κB pathway. The above findings enrich the theory of toxicological studies on PS-MPs and provide an essential reference for aquaculture.


Asunto(s)
Carpas , Contaminantes Químicos del Agua , Animales , FN-kappa B , Microplásticos/toxicidad , Plásticos , Poliestirenos/toxicidad , Receptor Toll-Like 4/genética , Ecosistema , Muerte Celular , Necrosis , Inflamación/inducido químicamente , Inflamación/veterinaria , Contaminantes Químicos del Agua/toxicidad
4.
Front Immunol ; 13: 1004949, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304460

RESUMEN

Background: Recent evidence has indicated that alterations in energy metabolism play a critical role in the pathogenesis of fibrotic diseases. Studies have suggested that 'metabolic reprogramming' involving the glycolysis and oxidative phosphorylation (OXPHOS) in cells lead to an enhanced generation of energy and biosynthesis. The aim of this study was to assess the molecular basis of changes in fibrotic metabolism in systemic sclerosis (Scleroderma; SSc) and highlight the most appropriate targets for anti-fibrotic therapies. Materials and methods: Dermal fibroblasts were isolated from five SSc patients and five healthy donors. Cells were cultured in medium with/without TGF-ß1 and with/without ALK5, pan-PIM or ATM kinase inhibitors. Extracellular flux analyses were performed to evaluate glycolytic and mitochondrial respiratory function. The mitochondrial network in TMRM-stained cells was visualized by confocal laser-scanning microscopy, followed by semi-automatic analysis on the ImageJ platform. Protein expression of ECM and fibroblast components, glycolytic enzymes, subunits of the five OXPHOS complexes, and dynamin-related GTPases and receptors involved in mitochondrial fission/fusion were assessed by western blotting. Results: Enhanced mitochondrial respiration coupled to ATP production was observed in SSc fibroblasts at the expense of spare respiratory capacity. Although no difference was found in glycolysis when comparing SSc with healthy control fibroblasts, levels of phophofructokinase-1 isoform PFKM were significantly lower in SSc fibroblasts (P<0.05). Our results suggest that the number of respirasomes is decreased in the SSc mitochondria; however, the organelles formed a hyperfused network, which is thought to increase mitochondrial ATP production through complementation. The increased mitochondrial fusion correlated with a change in expression levels of regulators of mitochondrial morphology, including decreased levels of DRP1, increased levels of MIEF2 and changes in OPA1 isoform ratios. TGF-ß1 treatment strongly stimulated glycolysis and mitochondrial respiration and induced the expression of fibrotic markers. The pan-PIM kinase inhibitor had no effect, whereas both ALK5 and ATM kinase inhibition abrogated TGF-ß1-mediated fibroblast activation, and upregulation of glycolysis and respiration. Conclusions: Our data provide evidence for a novel mechanism(s) by which SSc fibroblasts exhibit altered metabolic programs and highlight changes in respiration and dysregulated mitochondrial morphology and function, which can be selectively targeted by small molecule kinase inhibitors.


Asunto(s)
Esclerodermia Localizada , Esclerodermia Sistémica , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , Células Cultivadas , Esclerodermia Sistémica/patología , Fibrosis , Dinaminas , Adenosina Trifosfato , Factores de Elongación de Péptidos , Proteínas Mitocondriales
5.
Arthritis Res Ther ; 23(1): 234, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34488870

RESUMEN

BACKGROUND: The TßRII∆k-fib transgenic (TG) mouse model of scleroderma replicates key fibrotic and vasculopathic complications of systemic sclerosis through fibroblast-directed upregulation of TGFß signalling. We have examined peroxisome proliferator-activated receptor (PPAR) pathway perturbation in this model and explored the impact of the pan-PPAR agonist lanifibranor on the cardiorespiratory phenotype. METHODS: PPAR pathway gene and protein expression differences from TG and WT sex-matched littermate mice were determined at baseline and following administration of one of two doses of lanifibranor (30 mg/kg or 100 mg/kg) or vehicle administered by daily oral gavage up to 4 weeks. The prevention of bleomycin-induced lung fibrosis and SU5416-induced pulmonary hypertension by lanifibranor was explored. RESULTS: Gene expression data were consistent with the downregulation of the PPAR pathway in the TßRII∆k-fib mouse model. TG mice treated with high-dose lanifibranor demonstrated significant protection from lung fibrosis after bleomycin and from right ventricular hypertrophy following induction of pulmonary hypertension by SU5416, despite no significant change in right ventricular systolic pressure. CONCLUSIONS: In the TßRII∆k-fib mouse strain, treatment with 100 mg/kg lanifibranor reduces the development of lung fibrosis and right ventricular hypertrophy induced by bleomycin or SU5416, respectively. Reduced PPAR activity may contribute to the exaggerated fibroproliferative response to tissue injury in this transgenic model of scleroderma and its pulmonary complications.


Asunto(s)
Fibrosis Pulmonar , Esclerodermia Sistémica , Animales , Benzotiazoles , Ratones , Ratones Transgénicos , PPAR gamma , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/genética , Esclerodermia Sistémica/tratamiento farmacológico , Esclerodermia Sistémica/genética , Transducción de Señal , Sulfonamidas , Factor de Crecimiento Transformador beta
6.
Ecotoxicol Environ Saf ; 225: 112757, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34509164

RESUMEN

Environmental pollutant cadmium (Cd) can cause macrophage dysfunction, and the imbalance of M1/M2 is involved in the process of tissue fibrosis. In order to explore the effect of subacute CdCl2 exposure on pig lung tissue fibers and its mechanism, based on the establishment of this model, ICP-MS, H&E staining, Masson staining, Immunofluorescence, RT-PCR, and Western Blot methods were used to detect related indicators. The results found that lung tissue fibrosis, Cd content significantly increased, lung tissue ion disturbance, miR-20a-3p down-regulation, M1/M2 imbalance, LXA4/FPR2 content decreased, MDA content increased, NF-κB/NLRP3, TGFß pathway, PPARγ/Wnt pathway activated, and the expression of fibrosis-related factors increased. The above results indicate that subacute CdCl2 exposure increase Cd content in the pig lungs, which leads to M1/M2 imbalance and down-regulates the content of LXA4/FPR2, further activates the oxidative stress/NF-κB/NLRP3 pathway, thereby activating the TGFß and PPARγ/Wnt pathways to induce fibrosis. This study aims to reveal the toxic effects of CdCl2 and will provide new insights into the toxicology of Cd.


Asunto(s)
FN-kappa B , Fibrosis Pulmonar , Animales , Regulación hacia Abajo , Fibrosis , Macrófagos/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Fibrosis Pulmonar/inducido químicamente , Porcinos
7.
J Hazard Mater ; 417: 125962, 2021 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-33979708

RESUMEN

The environmental problem of Microplastics (MPs) pollution poses a great threat to human and animal health, which has attracted global attention. The physiological integrity of skeletal muscle is extremely important for the survival of animals. Here, we investigated the effect of two size polystyrene microplastics (PS-MPs, 1-10 µm and 50-100 µm) on the growth of anterior tibial (TA) muscle and repair after injury in mice. Results showed that the regeneration of skeletal muscle was delayed by PS-MPs exposure and was negatively correlated with particle size. H&E staining and Oil red O staining showed that PS-MPs exposure reduced the average cross-sectional area (CSA) and diameter of the muscle fibers, increased lipid deposition. Further mechanistic research displayed that though PS-MPs treatment did not affect cell viability of myoblast, it aggravated intracellular ROS generation and oxidative stress, inhibited myogenic differentiation by decreasing the phosphorylation of p38 MAPK, and promote adipogenic differentiation by increasing the expression of NF-κB, which could be alleviated by NAC. In brief, our data demonstrated that the ROS overproduction caused by PS-MPs disturbed the regeneration of skeletal muscle and directed the fate of satellite cells in mice.


Asunto(s)
Microplásticos , Poliestirenos , Adipocitos , Animales , Ratones , Músculo Esquelético , Mioblastos , Plásticos , Especies Reactivas de Oxígeno
8.
Ecotoxicol Environ Saf ; 204: 111049, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32758698

RESUMEN

Recent studies identified a novel programmed and regulated cell death that was characterized by a necrotic cell death morphology, termed necroptosis. Lead (Pb) is known as a persistent inorganic environmental pollutant that affects the health of humans and animals worldwide. However, there are no detailed reports of Pb-induced necroptosis of immune tissue. Selenium (Se) is a trace element that antagonizes the toxicity of heavy metals. Here, chickens were randomly divided into four groups, treated with Pb ((CH3OO)2Pb, 150 mg/kg) and/or Se (Na2SeO3, 2 mg/kg), aim to study the effect and mechanism of necroptosis in Pb-induced spleen injury and the antagonistic effects of Se on Pb toxicity. Our results showed that Pb exposure evidently increased the accumulation of Pb in spleen and caused necroptosis by upregulating the expression of RIP1, RIP3 and MLKL, and decreasing Caspase8 expression. Meanwhile, Pb treatment inhibited the activities of SOD, GPX, and CAT, caused the accumulation of NO and MDA, and induced oxidative stress, which promoted the expression of MAPK/NF-κB pathway genes (ERK, JNK, P38, NF-κB and TNF-α) and activated HSPs (HSP27, HSP40, HSP60, HSP70 and HSP90). However, the increased content of Pb in spleen and Pb-caused necroptosis were inhibited by Se cotreatment. Overall, we conclude that Se can prevent Pb-induced necroptosis by restoring antioxidant functions and blocking the MAPK/NF-κB pathway and HSPs activation in chicken spleen.


Asunto(s)
Pollos/fisiología , Contaminantes Ambientales/toxicidad , Plomo/toxicidad , Necroptosis/efectos de los fármacos , Sustancias Protectoras/farmacología , Selenio/farmacología , Bazo/efectos de los fármacos , Animales , Proteínas Aviares/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Proteínas de Choque Térmico/metabolismo , FN-kappa B/metabolismo , Distribución Aleatoria , Transducción de Señal/efectos de los fármacos , Bazo/fisiología
9.
Vasc Med ; 24(4): 295-305, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31084431

RESUMEN

Critical limb ischemia (CLI) is associated with skeletal muscle damage. However, the pathophysiology of the muscle damage is poorly understood. Toll-like receptors (TLR) have been attributed to play a role in ischemia-induced tissue damage but their role in skeletal muscle damage in CLI is unknown. TLR2 and TLR6 expression was found to be upregulated in skeletal muscle of patients with CLI. In vitro, ischemia led to upregulation of TLR2 and TLR6 by myotubes, and activation of the downstream TLR signaling pathway. Ischemia-induced activation of the TLR signaling pathway led to secretion of the pro-inflammatory cytokine interleukin-6 and muscle apoptosis, which were abrogated by neutralising TLR2 and TLR6 antibodies. Our study demonstrates that TLR2 and TLR6 are upregulated in ischemic muscle and play a role in ischemia-induced muscle damage. Thus, manipulating the TLR pathway locally may be of potential therapeutic benefit.


Asunto(s)
Apoptosis , Mediadores de Inflamación/metabolismo , Isquemia/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 6/metabolismo , Anciano , Animales , Estudios de Casos y Controles , Línea Celular , Enfermedad Crítica , Femenino , Humanos , Interleucina-6/metabolismo , Isquemia/patología , Masculino , Ratones , Persona de Mediana Edad , Fibras Musculares Esqueléticas/patología , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Regulación hacia Arriba
10.
Int J Biol Macromol ; 121: 429-442, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30326222

RESUMEN

Plant lectins are carbohydrate-binding proteins, which can interact with cell surfaces to initiate anti-inflammatory pathways, as well as immunomodulatory functions. Here, we have extracted, purified and part-characterized the bioactivity of Jacalin, Frutalin, DAL and PNA, before evaluating their potential for wound healing in cultured human skin fibroblasts. Only Frutalin stimulated fibroblast migration in vitro, prompting further studies which established its low cytotoxicity and interaction with TLR4 receptors. Frutalin also increased p-ERK expression and stimulated IL-6 secretion. The in vivo potential of Frutalin for wound healing was then assessed in hybrid combination with the polysaccharide galactomannan, purified from Caesalpinia pulcherrima seeds, using both hydrogel and membrane scaffolds formulations. Physical-chemical characterization of the hybrid showed that lectin-galactomannan interactions increased the pseudoplastic behaviour of solutions, reducing viscosity and increasing Frutalin's concentration. Furthermore, infrared spectroscopy revealed -OH band displacement, likely caused by interaction of Frutalin with galactose residues present on galactomannan chains, while average membrane porosity was 100 µm, sufficient to ensure water vapor permeability. Accelerated angiogenesis and increased fibroblast and keratinocyte proliferation were observed with the optimal hybrid recovering the lesioned area after 11 days. Our findings indicate Frutalin as a biomolecule with potential for tissue repair, regeneration and chronic wound healing.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Galectinas/química , Hidrogeles/química , Mananos/química , Membranas Artificiales , Cicatrización de Heridas/efectos de los fármacos , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Línea Celular , Galactosa/análogos & derivados , Humanos , Ratones , Modelos Moleculares , Conformación Proteica , Receptor Toll-Like 4/química , Receptor Toll-Like 4/metabolismo
11.
Sci Rep ; 7(1): 2628, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28572686

RESUMEN

Systemic sclerosis (SSc) is a spreading fibrotic disease affecting the skin and internal organs. We aimed to model pathogenic fibroblast migration in SSc in order to identify enhancing factors, measure the effect of migrating cells on underlying extracellular matrix (ECM) and test possible therapeutic inhibitors. Novel patterned collagen substrates were used to investigate alignment and migration of skin and lung fibroblasts from SSc patients and healthy controls. Normal lung but not skin fibroblasts consistently elongated and aligned with underlying collagen and migrated dependent on PDGF or serum. SSc lung fibroblasts remained growth factor dependent, did not migrate more rapidly and were less restricted to alignment of the collagen. Multiple collagen proline and lysine-modifying enzymes were identified in SSc but not control fibroblast extracellular matrix preparations, indicating differential levels of ECM modification by the diseased cells. Profiling of migrating cells revealed a possible SCF/c-Kit paracrine mechanism contributing to migration via a subpopulation of cells. Heparin, which binds ligands including PDGF and SCF, and imatininib which blocks downstream tyrosine kinase receptors, both inhibited lung fibroblast migration individually but showed synergy in SSc cells. Pathologic lung fibroblasts from SSc patients modify ECM during migration but remain growth factor dependent and sensitive to inhibitors.


Asunto(s)
Movimiento Celular , Colágeno/fisiología , Fibroblastos/fisiología , Esclerodermia Sistémica/fisiopatología , Ensayos de Migración Celular , Células Cultivadas , Colágeno/química , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Pulmón/citología , Pulmón/patología , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Esclerodermia Sistémica/metabolismo
12.
Clin Sci (Lond) ; 130(8): 575-86, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26744410

RESUMEN

Fibroblasts derived from the lungs of patients with idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc) produce low levels of prostaglandin (PG) E2, due to a limited capacity to up-regulate cyclooxygenase-2 (COX-2). This deficiency contributes functionally to the fibroproliferative state, however the mechanisms responsible are incompletely understood. In the present study, we examined whether the reduced level of COX-2 mRNA expression observed in fibrotic lung fibroblasts is regulated epigenetically. The DNA methylation inhibitor, 5-aza-2'-deoxycytidine (5AZA) restored COX-2 mRNA expression by fibrotic lung fibroblasts dose dependently. Functionally, this resulted in normalization of fibroblast phenotype in terms of PGE2 production, collagen mRNA expression and sensitivity to apoptosis. COX-2 methylation assessed by bisulfite sequencing and methylation microarrays was not different in fibrotic fibroblasts compared with controls. However, further analysis of the methylation array data identified a transcriptional regulator, chromosome 8 open reading frame 4 (thyroid cancer protein 1, TC-1) (c8orf4), which is hypermethylated and down-regulated in fibrotic fibroblasts compared with controls. siRNA knockdown of c8orf4 in control fibroblasts down-regulated COX-2 and PGE2 production generating a phenotype similar to that observed in fibrotic lung fibroblasts. Chromatin immunoprecipitation demonstrated that c8orf4 regulates COX-2 expression in lung fibroblasts through binding of the proximal promoter. We conclude that the decreased capacity of fibrotic lung fibroblasts to up-regulate COX-2 expression and COX-2-derived PGE2 synthesis is due to an indirect epigenetic mechanism involving hypermethylation of the transcriptional regulator, c8orf4.


Asunto(s)
Ciclooxigenasa 2/genética , Metilación de ADN , Epigénesis Genética , Fibroblastos/enzimología , Pulmón/enzimología , Proteínas de Neoplasias/genética , Fibrosis Pulmonar/genética , Esclerodermia Sistémica/genética , Anciano , Sitios de Unión , Estudios de Casos y Controles , Proliferación Celular , Células Cultivadas , Ciclooxigenasa 2/metabolismo , Metilación de ADN/efectos de los fármacos , Metilasas de Modificación del ADN/antagonistas & inhibidores , Metilasas de Modificación del ADN/metabolismo , Dinoprostona/metabolismo , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Inhibidores Enzimáticos/farmacología , Epigénesis Genética/efectos de los fármacos , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Regulación Neoplásica de la Expresión Génica , Genotipo , Humanos , Pulmón/efectos de los fármacos , Pulmón/patología , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/metabolismo , Fenotipo , Regiones Promotoras Genéticas , Fibrosis Pulmonar/enzimología , Fibrosis Pulmonar/patología , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Esclerodermia Sistémica/enzimología , Esclerodermia Sistémica/patología , Transcripción Genética , Transfección
13.
PLoS One ; 10(5): e0126015, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25955164

RESUMEN

In scleroderma (systemic sclerosis, SSc), persistent activation of myofibroblast leads to severe skin and organ fibrosis resistant to therapy. Increased mechanical stiffness in the involved fibrotic tissues is a hallmark clinical feature and a cause of disabling symptoms. Myocardin Related Transcription Factor-A (MRTF-A) is a transcriptional co-activator that is sequestered in the cytoplasm and translocates to the nucleus under mechanical stress or growth factor stimulation. Our objective was to determine if MRTF-A is activated in the disease microenvironment to produce more extracellular matrix in progressive SSc. Immunohistochemistry studies demonstrate that nuclear translocation of MRTF-A in scleroderma tissues occurs in keratinocytes, endothelial cells, infiltrating inflammatory cells, and dermal fibroblasts, consistent with enhanced signaling in multiple cell lineages exposed to the stiff extracellular matrix. Inhibition of MRTF-A nuclear translocation or knockdown of MRTF-A synthesis abolishes the SSc myofibroblast enhanced basal contractility and synthesis of type I collagen and inhibits the matricellular profibrotic protein, connective tissue growth factor (CCN2/CTGF). In MRTF-A null mice, basal skin and lung stiffness was abnormally reduced and associated with altered fibrillar collagen. MRTF-A has a role in SSc fibrosis acting as a central regulator linking mechanical cues to adverse remodeling of the extracellular matrix.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo/genética , Fibrosis/genética , Esclerodermia Sistémica/genética , Transactivadores/genética , Animales , Linaje de la Célula , Colágeno Tipo I/biosíntesis , Colágeno Tipo I/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Resistencia a Medicamentos/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Fibrosis/patología , Humanos , Ratones , Ratones Noqueados , Miofibroblastos/metabolismo , Miofibroblastos/patología , Transducción de Señal , Transactivadores/antagonistas & inhibidores , Transactivadores/metabolismo
14.
Arthritis Res Ther ; 17: 73, 2015 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-25885360

RESUMEN

INTRODUCTION: Clinical diversity in systemic sclerosis (SSc) reflects multifaceted pathogenesis and the effect of key growth factors or cytokines operating within a disease-specific microenvironment. Dermal interstitial fluid sampling offers the potential to examine local mechanisms and identify proteins expressed within lesional tissue. We used multiplex cytokine analysis to profile the inflammatory and immune activity in the lesions of SSc patients. METHODS: Dermal interstitial fluid sample from the involved forearm skin, and synchronous plasma samples were collected from SSc patients (n = 26, diffuse cutaneous SSc (DcSSc) n = 20, limited cutaneous SSc (LcSSc) n = 6), and healthy controls (HC) (n = 10) and profiled by Luminex® array for inflammatory cytokines, chemokines, and growth factors. RESULTS: Luminex® profiling of the dermal blister fluid showed increased inflammatory cytokines (median interleukin ( IL)-6 in SSc 39.78 pg/ml, HC 5.51 pg/ml, p = 0.01, median IL-15 in SSc 6.27 pg/ml, HC 4.38 pg/ml, p = 0.03), chemokines (monocyte chemotactic protein (MCP)-3 9.81 pg/ml in SSc, 7.18 pg/ml HC, p = 0.04), and profibrotic growth factors (platelet derived growth factor (PDGF)-AA 10.38 pg/ml versus 6.94 pg/ml in HC, p = 0.03). In general dermal fluid and plasma cytokine levels did not correlate, consistent with predominantly local production of these factors within the dermal lesions, rather than leakage from the serum. In hierarchical clustering and network analysis IL-6 emerged as a key central mediator. CONCLUSIONS: Our data confirm that an immuno-inflammatory environment and aberrant vascular repair are intimately linked to fibroblast activation in lesional skin in SSc. This non-invasive method could be used to profile disease activity in the clinic, and identifies key inflammatory or pro-fibrotic proteins that might be targeted therapeutically. Distinct subgroups of SSc may be defined that show innate or adaptive immune cytokine signatures.


Asunto(s)
Citocinas/análisis , Líquido Extracelular/inmunología , Esclerodermia Sistémica/inmunología , Vesícula , Análisis por Conglomerados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Piel
15.
J Invest Dermatol ; 134(11): 2693-2702, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24933320

RESUMEN

Skin involvement with dermal fibrosis is a hallmark of systemic sclerosis (SSc), and keratinocytes may be critical regulators of fibroblast function through secretion of chemo-attracting agents, as well as through growth factors and cytokines influencing the phenotype and proliferation rate of fibroblasts. Epithelial-fibroblast interactions have an important role in fibrosis in general. We have characterized the SSc epidermis and asked whether SSc-injured epidermal cells release factors capable of promoting fibrosis. Our results show that the SSc epidermis is hypertrophic, and has altered expression of terminal differentiation markers involucrin, loricrin, and filaggrin. Multiplex profiling revealed that SSc epidermal explants release increased levels of CCN2 and S100A9. CCN2 induction was found to spread into the upper papillary dermis, whereas S100A9 was shown to induce fibroblast proliferation and to enhance fibroblast CCN2 expression via Toll-like receptor 4. These data suggest that the SSc epidermis provides an important source of pro-fibrotic CCN2 and proinflammatory S100A9 in SSc skin, and therefore contributes to the fibrosis and inflammation seen in the disease.


Asunto(s)
Calgranulina B/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Células Epidérmicas , Queratinocitos/citología , Esclerodermia Sistémica/metabolismo , Diferenciación Celular , Proliferación Celular , Dermis/metabolismo , Dermis/patología , Epidermis/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Fibrosis , Proteínas Filagrina , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Inflamación , Queratinocitos/metabolismo , Piel/metabolismo , Piel/patología , Receptor Toll-Like 4/metabolismo
16.
J Vasc Surg ; 60(1): 191-201, 201.e1-2, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24055514

RESUMEN

OBJECTIVE: Managing critical limb ischemia (CLI) is challenging. Furthermore, ischemic myopathy prevents good functional outcome after revascularization. Hence, we have focused on limiting the tissue damage rather than angiogenesis, which has traditionally been the motivation to develop nonsurgical treatments for CLI. Erythropoietin (EPO) protects ischemic tissue, and this property may also benefit CLI. The objective of this study was to examine the expression of the tissue-protective EPO receptor complex (EPOR-CD131 [ß-chain of interleukin (IL)-3/IL-5/granulocyte macrophage colony-stimulating factor receptor]) in skeletal muscle obtained from humans with CLI. Because native EPO is thrombogenic, the antiapoptotic and anti-inflammatory effects of a nonhematopoietic helix-B peptide of EPO (ARA 290) were investigated on ischemic myotubes in vitro. METHODS: Tissue was obtained from gastrocnemius muscle of 12 patients undergoing amputation for CLI and from 12 patients without limb ischemia. The expression of EPOR and CD131 was demonstrated by immunohistochemistry and Western blot. A validated in vitro model of myotube ischemia was used in which mature C2C12 myotubes were cultured 6 to 12 hours in a depleted media and gas mixture (20% CO2 and 80% N2). The myotubes were pretreated with EPO or ARA 290 before exposure to simulated ischemia. Apoptosis and cell death were determined by cleaved caspase-3 assay and lactate dehydrogenase release assay. Enzyme-linked immunosorbent assay measured the inflammatory cytokines. RESULTS: EPOR and CD131 were expressed and significantly upregulated in CLI (average optical density [OD] in Western blot [control vs CLI] EPOR, 0.05 U vs 0.1 U; CD131, 0.10 U vs 0.22 U; P < .01). There was colocalization of EPOR and CD131 in the sarcolemma (cell membrane) of the skeletal myofiber. There was no difference in the distribution of colocalization between the CLI and the normal muscle. The ischemic myotubes treated by ARA 290 in vitro had a significantly decreased number of apoptotic cells (ischemia vs ischemia plus ARA 290: 71.1% vs 55.1%; P < .01), cleaved caspase-3 (OD of ischemia vs ischemia plus ARA 290: 0.15 U vs 0.02 U; P < .01), lactate dehydrogenase release (ischemia vs ischemia plus ARA 290: 32.5 U/L vs 21.3 U/L; P < .01), and IL-6 release (OD at 450 nm, ischemia vs ischemia plus ARA 290: 0.18 vs 0.13; P < .01). CONCLUSIONS: This study demonstrates the expression and the upregulation of EPOR and CD131 in CLI and also shows that EPOR and CDI are colocalized in the cell membrane of both ischemic and control muscle fiber. The in vitro experiments demonstrate that ARA 290 decreases inflammation and apoptosis of ischemic myotubes. ARA 290 may potentially be used as adjunctive treatment for CLI.


Asunto(s)
Subunidad beta Común de los Receptores de Citocinas/metabolismo , Isquemia/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Receptores de Eritropoyetina/metabolismo , Anciano , Apoptosis/efectos de los fármacos , Estudios de Casos y Controles , Caspasa 3/metabolismo , Membrana Celular/química , Subunidad beta Común de los Receptores de Citocinas/análisis , Eritropoyetina/farmacología , Extremidades/irrigación sanguínea , Femenino , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-6/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Masculino , Persona de Mediana Edad , Fibras Musculares Esqueléticas/química , Oligopéptidos/farmacología , Receptores de Eritropoyetina/análisis , Regulación hacia Arriba
17.
Mol Cancer Ther ; 12(8): 1556-67, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23723122

RESUMEN

Endothelin 1 (ET-1) is overexpressed in cancer, contributing to disease progression. We previously showed that ET-1 stimulated proliferative, migratory, and contractile tumorigenic effects via the ET(A) receptor. Here, for the first time, we evaluate zibotentan, a specific ET(A) receptor antagonist, in the setting of colorectal cancer, in cellular models. Pharmacologic characteristics were further determined in patient tissues. Colorectal cancer lines (n = 4) and fibroblast strains (n = 6), isolated from uninvolved areas of colorectal cancer specimens, were exposed to ET-1 and/or ET(A)/(B) receptor antagonists. Proliferation (methylene blue), migration (scratch wounds), and contraction (gel lattices) were assessed. Receptor distribution and binding characteristics (K(d), B(max)) were determined using autoradiography on tissue sections and homogenates and cytospun cells, supported by immunohistochemistry. Proliferation was inhibited by ET(A) (zibotentan > BQ123; P < 0.05), migration by ET(B) > ET(A), and contraction by combined ET(A) and ET(B) antagonism. Intense ET-1 stromal binding correlated with fibroblasts and endothelial cells. Colorectal cancer lines and fibroblasts revealed high density and affinity ET-1 binding (B(max) = 2.435 fmol/1 × 10(6) cells, K(d) = 367.7 pmol/L; B(max) = 3.03 fmol/1 × 10(6) cells, K(d) = 213.6 pmol/L). In cancer tissues, ET(A) receptor antagonists (zibotentan; BQ123) reduced ET-1 binding more effectively (IC(50): 0.1-10 µmol/L) than ET(B) receptor antagonist BQ788 (∼IC(50), 1 mmol/L). ET-1 stimulated cancer-contributory processes. Its localization to tumor stroma, with greatest binding/affinity to fibroblasts, implicates these cells in tumor progression. ET(A) receptor upregulation in cancer tissues and its role in tumorigenic processes show the receptor's importance in therapeutic targeting. Zibotentan, the most specific ET(A) receptor antagonist available, showed the greatest inhibition of ET-1 binding. With its known safety profile, we provide evidence for zibotentan's potential role as adjuvant therapy in colorectal cancer.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/metabolismo , Antagonistas de los Receptores de la Endotelina A , Pirrolidinas/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Evaluación Preclínica de Medicamentos , Antagonistas de los Receptores de la Endotelina B , Endotelina-1/metabolismo , Fibroblastos/efectos de los fármacos , Humanos , Unión Proteica , Transporte de Proteínas , Pirrolidinas/administración & dosificación , Pirrolidinas/química , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo
18.
Fibrogenesis Tissue Repair ; 6(1): 10, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23663505

RESUMEN

BACKGROUND: Platelet-derived growth factor (PDGF) signalling is essential for many key cellular processes in mesenchymal cells. As there is redundancy in signalling between the five PDGF ligand isoforms and three PDGF receptor isoforms, and deletion of either of the receptors in vivo produces an embryonic lethal phenotype, it is not know which ligand and receptor combinations mediate specific cellular functions. Fibroblasts are key mediators in wound healing and tissues repair. Recent clinical trials using broad spectrum tyrosine kinase inhibitors in fibrotic diseases have highlighted the need to further examine the specific cellular roles each of the tyrosine kinases plays in fibrotic processes. In this study, we used PDGFR-specific neutralising antibodies to dissect out receptor-specific signalling events in fibroblasts in vitro, to further understand key cellular processes involved in wound healing and tissue repair. RESULTS: Neutralising antibodies against PDGFRs were shown to block signalling through PDGFRα and PDGFRß receptors, reduce human PDGF-AA and PDGF-BB-induced collagen gel remodelling in dermal fibroblasts, and reduce migration stimulated by all PDGF ligands in human dermal and lung fibroblasts. CONCLUSIONS: PDGFRα and PDGFRß neutralising antibodies can be a useful tool in studying PDGFR isoform-specific cellular events.

19.
Cardiol Res Pract ; 2012: 213785, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22462027

RESUMEN

Erythropoietin (EPO) has tissue-protective properties, but it increases the risk of thromboembolism by raising the haemoglobin concentration. New generation of EPO derivatives is tissue protective without the haematopoietic side effects. Preclinical studies have demonstrated their effectiveness and safety. This paper summarizes the development in EPO derivatives with emphasis on their potential use in critical limb ischaemia.

20.
Fibrogenesis Tissue Repair ; 4: 13, 2011 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-21635730

RESUMEN

BACKGROUND: Systemic sclerosis (SSc) is a chronic inflammatory autoimmune disease characterised by vascular dysfunction and damage, excess collagen deposition and subsequent organ manifestations. Vasculopathy is an early feature of the disease which leads to a chronic hypoxic environment in the tissues. Paradoxically, there is a lack of angiogenesis. We hypothesised that this may in part be due to a nonphysiological, overriding upregulation in antiangiogenic factors produced by the hypoxic tissues. We considered thrombospondin 1 (TSP-1) as a candidate antiangiogenic factor. RESULTS: Conditioned media from human microvascular endothelial cells cultured in both normoxic and hypoxic environments were able to block endothelial cell proliferation, with the latter environment having a more profound effect. Filtration to remove > 100-kDa proteins or heparin-binding proteins from the conditioned media eliminated their antiproliferative effect. TSP-1 was expressed in high concentrations in the hypoxic media, as was vascular endothelial growth factor (VEGF). Depletion of TSP-1 from the media by immunoprecipitation reduced the antiproliferative effect. We then show that, in a dose-dependent fashion, recombinant TSP-1 blocks the proliferation of endothelial cells. Immunohistochemistry of skin biopsy material revealed that TSP-1 expression was significantly higher throughout the skin of patients with SSc compared with healthy controls. CONCLUSIONS: Despite the environment of chronic tissue hypoxia in SSc, there is a paradoxical absence of angiogenesis. This is thought to be due in part to aberrant expression of antiangiogenic factors, including TSP-1. We have demonstrated that TSP-1 is released in high concentrations by hypoxic endothelial cells. The conditioned media from these cells is able to block proliferation and induce apoptosis in microvascular endothelial cells, an effect that is reduced when TSP-1 is immunoprecipitated out. Further, we have shown that recombinant TSP-1 is able to block proliferation and induce apoptosis at concentrations consistent with those found in the plasma of patients with SSc and that its effect occurs in the presence of elevated VEGF levels. Taken together, these data are consistent with a model wherein injured microvascular cells in SSc fail to repair because of dysregulated induction of TSP-1 in the hypoxic tissues.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...