Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7521, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39214964

RESUMEN

Fiber-based interferometers receive significant interest as they lead to miniaturization of optoacoustic and ultrasound detectors without the quadratic loss of sensitivity common to piezoelectric elements. Nevertheless, in contrast to piezoelectric crystals, current fiber-based ultrasound detectors operate with narrow ultrasound bandwidth which limits the application range and spatial resolution achieved in imaging implementations. We port the concept of silicon waveguide etalon detection to optical fibers using a sub-acoustic reflection terminator to a Bragg grating embedded etalon resonator (EER), uniquely implementing direct and forward-looking access to incoming ultrasound waves. Precise fabrication of the terminator is achieved by continuously recording the EER spectrum during polishing and fitting the spectra to a theoretically calculated spectrum for the selected thickness. Characterization of the EER inventive design reveals a small aperture (10.1 µm) and an ultra-wide bandwidth (160 MHz) that outperforms other fiber resonators and enables an active detection area and overall form factor that is smaller by more than an order of magnitude over designs based on piezoelectric transducers. We discuss how the EER paves the way for the most adept fiber-based miniaturized sound detection today, circumventing the limitations of currently available designs.

2.
J Biophotonics ; 14(7): e202000501, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33773073

RESUMEN

Optical fiber sensors can offer robust and miniaturized detection of wideband ultrasound, yielding high sensitivity and immunity to electromagnetic interference. However, the lack of cost-effective manufacturing methods prevents the disseminated use of these sensors in biomedical applications. In this study, we developed and optimized a simple method to create optical cavities with high-quality mirrors for acoustic sensing based on micro-manipulation of UV-curable optical adhesives and electroless chemical silver deposition. This approach enables the manufacturing of ultrasound sensors based on Fabry-Pérot interferometers on optical fiber tips with minimal production costs. Characterization and high-resolution optoacoustic imaging experiments show that the manufacturing process yielded a fiber sensor with a small NEP ( 11mPa/Hz ) over a broad detection bandwidth (25 MHz), generally outperforming conventional piezoelectric based transducers. We discuss how the new manufacturing process leads to a high-performance acoustic detector that, due to low cost, can be used as a disposable sensor.


Asunto(s)
Interferometría , Fibras Ópticas , Diagnóstico por Imagen , Transductores , Ultrasonografía
3.
Nature ; 585(7825): 372-378, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32939068

RESUMEN

Ultrasound detectors use high-frequency sound waves to image objects and measure distances, but the resolution of these readings is limited by the physical dimensions of the detecting element. Point-like broadband ultrasound detection can greatly increase the resolution of ultrasonography and optoacoustic (photoacoustic) imaging1,2, but current ultrasound detectors, such as those used for medical imaging, cannot be miniaturized sufficiently. Piezoelectric transducers lose sensitivity quadratically with size reduction3, and optical microring resonators4 and Fabry-Pérot etalons5 cannot adequately confine light to dimensions smaller than about 50 micrometres. Micromachining methods have been used to generate arrays of capacitive6 and piezoelectric7 transducers, but with bandwidths of only a few megahertz and dimensions exceeding 70 micrometres. Here we use the widely available silicon-on-insulator technology to develop a miniaturized ultrasound detector, with a sensing area of only 220 nanometres by 500 nanometres. The silicon-on-insulator-based optical resonator design provides per-area sensitivity that is 1,000 times higher than that of microring resonators and 100,000,000 times better than that of piezoelectric detectors. Our design also enables an ultrawide detection bandwidth, reaching 230 megahertz at -6 decibels. In addition to making the detectors suitable for manufacture in very dense arrays, we show that the submicrometre sensing area enables super-resolution detection and imaging performance. We demonstrate imaging of features 50 times smaller than the wavelength of ultrasound detected. Our detector enables ultra-miniaturization of ultrasound readings, enabling ultrasound imaging at a resolution comparable to that achieved with optical microscopy, and potentially enabling the development of very dense ultrasound arrays on a silicon chip.

4.
Opt Lett ; 41(9): 1953-6, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-27128047

RESUMEN

Optical and optoacoustic (photoacoustic) microscopy have been recently joined in hybrid implementations that resolve extended tissue contrast compared to each modality alone. Nevertheless, the application of the hybrid technique is limited by the requirement to combine an optical objective with ultrasound detection collecting signal from the same micro-volume. We present an all-optical optoacoustic microscope based on a pi-phase-shifted fiber Bragg grating (π-FBG) with coherence-restored pulsed interferometry (CRPI) used as the interrogation method. The sensor offers an ultra-small footprint and achieved higher sensitivity over piezoelectric transducers of similar size. We characterize the spectral bandwidth of the ultrasound detector and interrogate the imaging performance on phantoms and tissues. We show the first optoacoustic images of biological specimen recorded with π-FBG sensors. We discuss the potential uses of π-FBG sensors based on CRPI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...