Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Clin Pharmacol Ther ; 114(5): 1023-1032, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37501650

RESUMEN

BAY1128688 is a selective inhibitor of AKR1C3, investigated recently in a trial that was prematurely terminated due to drug-induced liver injury. These unexpected observations prompted use of the quantitative systems toxicology model, DILIsym, to determine possible mechanisms of hepatotoxicity. Using mechanistic in vitro toxicity data as well as clinical exposure data, DILIsym predicted the potential for BAY1128688 to cause liver toxicity (elevations in serum alanine aminotransferase (ALT)) and elevations in serum bilirubin. Initial simulations overpredicted hepatotoxicity and bilirubin elevations, so the BAY1128688 representation within DILIsym underwent optimization. The liver partition coefficient Kp was altered to align simulated bilirubin elevations with those observed clinically. Altering the mode of bile acid canalicular and basolateral efflux inhibition was necessary to accurately predict ALT elevations. Optimization results support that bilirubin elevations observed early during treatment are due to altered bilirubin metabolism and transporter inhibition, which is independent of liver injury. The modeling further supports that on-treatment ALT elevations result from inhibition of bile acid transporters, particularly the bile salt excretory pump, leading to accumulation of toxic bile acids. The predicted dose-dependent intrinsic hepatotoxicity may increase patient susceptibility to an adaptive immune response, accounting for ALT elevations observed after completion of treatment. These BAY1128688 simulations provide insight into the mechanisms behind hepatotoxicity and bilirubin elevations and may inform the potential risk posed by future compounds.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/metabolismo , Ácidos y Sales Biliares/metabolismo , Bilirrubina , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/metabolismo , Hígado/metabolismo
2.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37298645

RESUMEN

Biologics address a range of unmet clinical needs, but the occurrence of biologics-induced liver injury remains a major challenge. Development of cimaglermin alfa (GGF2) was terminated due to transient elevations in serum aminotransferases and total bilirubin. Tocilizumab has been reported to induce transient aminotransferase elevations, requiring frequent monitoring. To evaluate the clinical risk of biologics-induced liver injury, a novel quantitative systems toxicology modeling platform, BIOLOGXsym™, representing relevant liver biochemistry and the mechanistic effects of biologics on liver pathophysiology, was developed in conjunction with clinically relevant data from a human biomimetic liver microphysiology system. Phenotypic and mechanistic toxicity data and metabolomics analysis from the Liver Acinus Microphysiology System showed that tocilizumab and GGF2 increased high mobility group box 1, indicating hepatic injury and stress. Tocilizumab exposure was associated with increased oxidative stress and extracellular/tissue remodeling, and GGF2 decreased bile acid secretion. BIOLOGXsym simulations, leveraging the in vivo exposure predicted by physiologically-based pharmacokinetic modeling and mechanistic toxicity data from the Liver Acinus Microphysiology System, reproduced the clinically observed liver signals of tocilizumab and GGF2, demonstrating that mechanistic toxicity data from microphysiology systems can be successfully integrated into a quantitative systems toxicology model to identify liabilities of biologics-induced liver injury and provide mechanistic insights into observed liver safety signals.


Asunto(s)
Productos Biológicos , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Humanos , Productos Biológicos/farmacología , Biomimética , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Hígado
3.
Toxicol Sci ; 175(2): 292-300, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32040174

RESUMEN

For patients with amyotrophic lateral sclerosis who take oral riluzole tablets, approximately 50% experience alanine transaminase (ALT) levels above upper limit of normal (ULN), 8% above 3× ULN, and 2% above 5× ULN. BHV-0223 is a novel 40 mg rapidly sublingually disintegrating (Zydis) formulation of riluzole, bioequivalent to conventional riluzole 50 mg oral tablets, that averts the need for swallowing tablets and mitigates first-pass hepatic metabolism, thereby potentially reducing risk of liver toxicity. DILIsym is a validated multiscale computational model that supports evaluation of liver toxicity risks. DILIsym was used to compare the hepatotoxicity potential of oral riluzole tablets (50 mg BID) versus BHV-0223 (40 mg BID) by integrating clinical data and in vitro toxicity data. In a simulated population (SimPops), ALT levels > 3× ULN were predicted in 3.9% (11/285) versus 1.4% (4/285) of individuals with oral riluzole tablets and sublingual BHV-0223, respectively. This represents a relative risk reduction of 64% associated with BHV-0223 versus conventional riluzole tablets. Mechanistic investigations revealed that oxidative stress was responsible for the predicted ALT elevations. The validity of the DILIsym representation of riluzole and assumptions is supported by its ability to predict rates of ALT elevations for riluzole oral tablets comparable with that observed in clinical data. Combining a mechanistic, quantitative representation of hepatotoxicity with interindividual variability in both susceptibility and liver exposure suggests that sublingual BHV-0223 confers diminished rates of liver toxicity compared with oral tablets of riluzole, consistent with having a lower overall dose of riluzole and bypassing first-pass liver metabolism.


Asunto(s)
Administración Oral , Administración Sublingual , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/prevención & control , Riluzol/efectos adversos , Riluzol/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Pruebas de Función Hepática , Masculino , Persona de Mediana Edad
4.
Pharmacol Res Perspect ; 7(6): e00523, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31624633

RESUMEN

Many compounds that appear promising in preclinical species, fail in human clinical trials due to safety concerns. The FDA has strongly encouraged the application of modeling in drug development to improve product safety. This study illustrates how DILIsym, a computational representation of liver injury, was able to reproduce species differences in liver toxicity due to PF-04895162 (ICA-105665). PF-04895162, a drug in development for the treatment of epilepsy, was terminated after transaminase elevations were observed in healthy volunteers (NCT01691274). Liver safety concerns had not been raised in preclinical safety studies. DILIsym, which integrates in vitro data on mechanisms of hepatotoxicity with predicted in vivo liver exposure, reproduced clinical hepatotoxicity and the absence of hepatotoxicity observed in the rat. Simulated differences were multifactorial. Simulated liver exposure was greater in humans than rats. The simulated human hepatotoxicity was demonstrated to be due to the interaction between mitochondrial toxicity and bile acid transporter inhibition; elimination of either mechanism from the simulations abrogated injury. The bile acid contribution occurred despite the fact that the IC50 for bile salt export pump (BSEP) inhibition by PF-04895162 was higher (311 µmol/L) than that has been generally thought to contribute to hepatotoxicity. Modeling even higher PF-04895162 liver exposures than were measured in the rat safety studies aggravated mitochondrial toxicity but did not result in rat hepatotoxicity due to insufficient accumulation of cytotoxic bile acid species. This investigative study highlights the potential for combined in vitro and computational screening methods to identify latent hepatotoxic risks and paves the way for similar and prospective studies.


Asunto(s)
Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/antagonistas & inhibidores , Anticonvulsivantes/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Biológicos , Quinazolinas/toxicidad , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/metabolismo , Administración Oral , Adolescente , Adulto , Animales , Anticonvulsivantes/administración & dosificación , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Simulación por Computador , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/normas , Epilepsia/tratamiento farmacológico , Células HEK293 , Voluntarios Sanos , Hepatocitos , Humanos , Concentración 50 Inhibidora , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Persona de Mediana Edad , Mitocondrias/efectos de los fármacos , Quinazolinas/administración & dosificación , Ratas , Especificidad de la Especie , Ácido Taurocólico/metabolismo , Adulto Joven
5.
Drug Metab Pharmacokinet ; 32(1): 40-45, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28129975

RESUMEN

Idiosyncratic drug-induced liver injury (iDILI) is a serious concern in drug development. The rarity and multifactorial nature of iDILI makes it difficult to predict and explain. Recently, human leukocyte antigen (HLA) allele associations have provided strong support for a role of an adaptive immune response in the pathogenesis of many iDILI cases; however, it is likely that an adaptive immune attack requires several preceding events. Quantitative systems pharmacology (QSP), an in silico modeling technique that leverages known physiology and the results of in vitro experiments in order to make predictions about how drugs affect biological processes, is proposed as a potentially useful tool for predicting and explaining critical events that likely precede immune-mediated iDILI, as well as the immune attack itself. DILIsym, a QSP platform for drug-induced liver injury, has demonstrated success in predicting the presence of delayed hepatocellular stress events that likely precede the iDILI cascade, and has successfully predicted hepatocellular stress likely underlying iDILI attributed to troglitazone and tolvaptan. The incorporation of a model of the adaptive immune system into DILIsym would represent and important advance. In summary, QSP methods can play a key role in the future prediction and understanding of both immune-mediated and non-immune-mediated iDILI.


Asunto(s)
Benzazepinas/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Cromanos/efectos adversos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Modelos Biológicos , Tiazolidinedionas/efectos adversos , Animales , Benzazepinas/inmunología , Benzazepinas/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Cromanos/inmunología , Cromanos/uso terapéutico , Humanos , Tiazolidinedionas/inmunología , Tiazolidinedionas/uso terapéutico , Tolvaptán , Troglitazona
6.
Toxicol Sci ; 155(1): 61-74, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27655350

RESUMEN

Tolvaptan is a selective vasopressin V2 receptor antagonist, approved in several countries for the treatment of hyponatremia and autosomal dominant polycystic kidney disease (ADPKD). No liver injury has been observed with tolvaptan treatment in healthy subjects and in non-ADPKD indications, but ADPKD clinical trials showed evidence of drug-induced liver injury (DILI). Although all DILI events resolved, additional monitoring in tolvaptan-treated ADPKD patients is required. In vitro assays identified alterations in bile acid disposition and inhibition of mitochondrial respiration as potential mechanisms underlying tolvaptan hepatotoxicity. This report details the application of DILIsym software to determine whether these mechanisms could account for the liver safety profile of tolvaptan observed in ADPKD clinical trials. DILIsym simulations included physiologically based pharmacokinetic estimates of hepatic exposure for tolvaptan and2 metabolites, and their effects on hepatocyte bile acid transporters and mitochondrial respiration. The frequency of predicted alanine aminotransferase (ALT) elevations, following simulated 90/30 mg split daily dosing, was 7.9% compared with clinical observations of 4.4% in ADPKD trials. Toxicity was multifactorial as inhibition of bile acid transporters and mitochondrial respiration contributed to the simulated DILI. Furthermore, simulation analysis identified both pre-treatment risk factors and on-treatment biomarkers predictive of simulated DILI. The simulations demonstrated that in vivo hepatic exposure to tolvaptan and the DM-4103 metabolite, combined with these 2 mechanisms of toxicity, were sufficient to account for the initiation of tolvaptan-mediated DILI. Identification of putative risk-factors and potential novel biomarkers provided insight for the development of mechanism-based tolvaptan risk-mitigation strategies.


Asunto(s)
Antagonistas de los Receptores de Hormonas Antidiuréticas/efectos adversos , Benzazepinas/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Modelos Biológicos , Antagonistas de los Receptores de Hormonas Antidiuréticas/farmacocinética , Benzazepinas/farmacocinética , Susceptibilidad a Enfermedades , Humanos , Tolvaptán
7.
Biopharm Drug Dispos ; 35(1): 33-49, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24214486

RESUMEN

The drug development industry faces multiple challenges in the realization of safe effective drugs. Computational modeling approaches can be used to support these efforts. One approach, mechanistic modeling, is new to the realm of drug safety. It holds the promise of not only predicting toxicity for novel compounds, but also illuminating the mechanistic underpinnings of toxicity. To increase the scientific community's familiarity with mechanistic modeling in drug safety, this article seeks to provide perspective on the type of data used, how they are used and where they are lacking. Examples are derived from the development of DILIsym(®) software, a mechanistic model of drug-induced liver injury (DILI). DILIsym(®) simulates the mechanistic interactions and events from compound administration through the progression of liver injury and regeneration. Modeling mitochondrial toxicity illustrates the type and use of in vitro data to represent biological interactions, as well as insights on key differences between in vitro and in vivo conditions. Modeling bile acid toxicity illustrates a case in which the over-arching mechanism is well accepted, but many mechanistic details are lacking. Modeling was used to identify measurements predicted to strongly impact toxicity. Finally, modeling innate immune responses illustrates the importance of time-series data, particularly in the presence of positive and negative feedback loops, as well as the need for data from different animal species for better translation. These concepts are germane to most mechanistic models, although the details will vary. The use of mechanistic models is expected to improve the rational design of new drugs.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Modelos Biológicos , Programas Informáticos , Animales , Ácidos y Sales Biliares/metabolismo , Humanos , Inmunidad Innata , Mitocondrias/fisiología
8.
Front Physiol ; 3: 462, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23248599

RESUMEN

We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of "toxicity pathways" is described in the context of the 2007 US National Academies of Science report, "Toxicity testing in the 21st Century: A Vision and A Strategy." Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity) - a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular "virtual tissue" model of the liver lobule that combines molecular circuits in individual hepatocytes with cell-cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the aryl hydrocarbon receptor toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsym™) to understand drug-induced liver injury (DILI), the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological scales.

9.
Diabetes ; 61(6): 1490-9, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22362174

RESUMEN

We have previously developed a combination therapy (CT) using anti-CD3 monoclonal antibodies together with islet-(auto)antigen immunizations that can more efficiently reverse type 1 diabetes (T1D) than either entity alone. However, clinical translation of antigen-specific therapies in general is hampered by the lack of biomarkers that could be used to optimize the modalities of antigen delivery and to predict responders from nonresponders. To support the rapid identification of candidate biomarkers, we systematically evaluated multiple variables in a mathematical disease model. The in silico predictions were validated by subsequent laboratory data in NOD mice with T1D that received anti-CD3/oral insulin CT. Our study shows that higher anti-insulin autoantibody levels at diagnosis can distinguish responders and nonresponders among recipients of CT exquisitely well. In addition, early posttreatment changes in proinflammatory cytokines were indicative of long-term remission. Coadministration of oral insulin improved and prolonged the therapeutic efficacy of anti-CD3 therapy, and long-term protection was achieved by maintaining elevated insulin-specific regulatory T cell numbers that efficiently lowered diabetogenic effector memory T cells. Our validation of preexisting autoantibodies as biomarkers to distinguish future responders from nonresponders among recipients of oral insulin provides a compelling and mechanistic rationale to more rapidly translate anti-CD3/oral insulin CT for human T1D.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Autoanticuerpos/inmunología , Complejo CD3/inmunología , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/inmunología , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Animales , Anticuerpos Monoclonales/administración & dosificación , Diabetes Mellitus Tipo 1/sangre , Femenino , Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Ratones , Ratones Endogámicos NOD
10.
Ann N Y Acad Sci ; 1103: 45-62, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17376834

RESUMEN

Type 1 diabetes is a complex, multifactorial disease characterized by T cell-mediated autoimmune destruction of insulin-secreting pancreatic beta cells. To facilitate research in type 1 diabetes, a large-scale dynamic mathematical model of the female non-obese diabetic (NOD) mouse was developed. In this model, termed the Entelos Type 1 Diabetes PhysioLab platform, virtual NOD mice are constructed by mathematically representing components of the immune system and islet beta cell physiology important for the pathogenesis of type 1 diabetes. This report describes the scope of the platform and illustrates some of its capabilities. Specifically, using two virtual NOD mice with either average or early diabetes-onset times, we demonstrate the reproducibility of experimentally observed dynamics involved in diabetes progression, therapeutic responses to exogenous IL-10, and heterogeneity in disease onset. Additionally, we use the Type 1 Diabetes PhysioLab platform to investigate the impact of disease heterogeneity on the effectiveness of exogenous IL-10 therapy to prevent diabetes onset. Results indicate that the inability of a previously published IL-10 therapy protocol to protect NOD mice who exhibit early diabetes onset is due to high levels of pancreatic lymph node (PLN) inflammation, islet infiltration, and beta cell destruction at the time of treatment initiation. Further, simulation indicates that earlier administration of the treatment protocol can prevent NOD mice from developing diabetes by initiating treatment during the period when the disease is still sensitive to IL-10's protective function.


Asunto(s)
Diabetes Mellitus Tipo 1 , Ratones Endogámicos NOD , Proyectos de Investigación , Interfaz Usuario-Computador , Animales , Simulación por Computador , Diabetes Mellitus Tipo 1/fisiopatología , Progresión de la Enfermedad , Humanos , Ratones , Modelos Biológicos , Fisiología/métodos
11.
Ann N Y Acad Sci ; 1103: 63-8, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17376835

RESUMEN

Several publications describing the use of anti-CD40L monoclonal antibodies (anti-CD40L) for the treatment of type 1 diabetes in non-obese diabetic (NOD) mice have reported different treatment responses to similar protocols. The Entelos Type 1 Diabetes PhysioLab platform, a dynamic large-scale mathematical model of the pathogenesis of type 1 diabetes, was used to study the effects of anti-CD40L therapy in silico. An examination of the impact of pharmacokinetic variability and the heterogeneity of disease progression rate on therapeutic outcome provided insights that could reconcile the apparently conflicting data. Optimal treatment protocols were identified by exploring the dynamics of key pathophysiological pathways.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Ligando de CD40/inmunología , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/inmunología , Animales , Simulación por Computador , Esquema de Medicación , Humanos , Ratones , Ratones Endogámicos NOD , Modelos Biológicos
12.
Ann N Y Acad Sci ; 1079: 369-73, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17130581

RESUMEN

Anti-CD3 antibody therapy, a promising clinical approach for the treatment of type 1 diabetes (T1D), was investigated using a mathematical model of T1D in the female nonobese diabetic (NOD) mouse. Analyses of model simulation results indicate that, in addition to the known direct effects of anti-CD3 antibody on T lymphocytes, two additional mechanisms are required for sustained disease remission: (a) rapid regrowth of healthy beta cells following clearance of islet inflammation and (b) enhanced regulatory T cell activity and/or phenotypic changes in antigen presenting cells (APCs) that promote a stable regulatory environment in the pancreas.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Complejo CD3/inmunología , Diabetes Mellitus Tipo 1/inmunología , Modelos Teóricos , Animales , Anticuerpos Monoclonales/uso terapéutico , Células Presentadoras de Antígenos/inmunología , Glucemia/metabolismo , Simulación por Computador , Diabetes Mellitus Tipo 1/etiología , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/prevención & control , Femenino , Células Secretoras de Insulina/inmunología , Islotes Pancreáticos/inmunología , Islotes Pancreáticos/patología , Ratones , Ratones Endogámicos NOD , Biología de Sistemas , Linfocitos T/inmunología
13.
Immunity ; 23(2): 115-26, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16111631

RESUMEN

Type 1 diabetes (T1D) animal models such as the nonobese diabetic (NOD) mouse have improved our understanding of disease pathophysiology, but many candidate therapeutics identified therein have failed to prevent/cure human disease. We have performed a comprehensive evaluation of disease-modifying agents tested in the NOD mouse based on treatment timing, duration, study length, and efficacy. Interestingly, some popular tenets regarding NOD interventions were not confirmed: all treatments do not prevent disease, treatment dose and timing strongly influence efficacy, and several therapies have successfully treated overtly diabetic mice. The analysis provides a unique perspective on NOD interventions and suggests that the response of this model to therapeutic interventions can be a useful predictor of the human response as long as careful consideration is given to treatment dose, timing, and protocols; more thorough investigation of these parameters should improve clinical translation.


Asunto(s)
Diabetes Mellitus Tipo 1/terapia , Modelos Animales de Enfermedad , Animales , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/fisiopatología , Humanos , Ratones , Ratones Endogámicos NOD
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...