Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38961825

RESUMEN

The sympathetic nervous system is critical for regulating blood pressure (BP) via the arterial baroreflex as well as sympathetic transduction in the peripheral vasculature. These mechanisms interact and both may be altered with aging and impacted by menopause. Although age-related decreases in sympathetic transduction have been demonstrated in women, it remains unclear whether sympathetic baroreflex sensitivity (BRS) is impaired in postmenopausal women (POST). We tested the hypothesis that sympathetic BRS would be enhanced in POST compared to premenopausal women (PRE). We examined beat-by-beat BP and muscle sympathetic nerve activity (MSNA) in 19 PRE (22±2 yr, 22±3 kg/m2) and 12 POST (57±5 yr, 24±2 kg/m2) during 10 minutes of rest. Spontaneous sympathetic BRS was quantified as the slope of a linear regression between MSNA burst incidence and diastolic BP. Sympathetic transduction to mean arterial pressure (MAP) for the 10-cardiac cycles following spontaneous MSNA bursts was assessed via signal averaging method. Resting MAP was similar (PRE: 82±8 vs. POST: 85±8 mm Hg, P=0.43), whereas resting MSNA was elevated in POST (PRE: 10±6 vs. POST: 45±16 bursts/100 heartbeats, P<0.0001). Spontaneous sympathetic BRS was enhanced in POST (PRE: -2.0±1.2 vs. POST: -5.2±1.9 bursts/beat/mm Hg, P<0.0005). Sympathetic transduction to MAP was attenuated in POST (Time: P<0.001, Group: P<0.001, Interaction: P<0.01). These data suggest that sympathetic BRS may be enhanced in POST. Consistent with recent hypotheses, enhanced sensitivity of the arterial baroreflex's neural arc may signify a compensatory response to reduced efficiency of the peripheral arterial baroreflex arc (i.e., sympathetic transduction) to preserve BP buffering capacity.

2.
Clin Auton Res ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926194

RESUMEN

PURPOSE: The compensatory mechanisms supporting cerebral perfusion throughout head-up tilt (HUT) in patients with vasovagal syncope (VVS) remain unclear. We tested the hypothesis that increased cerebrovascular compliance (Ci) and decreased cerebrovascular resistance (CVR) support cerebral blood velocity (CBV) during pre-syncope in VVS. METHODS: Finger arterial blood pressure (ABP) and right middle cerebral artery blood velocity (CBV) were recorded in 15 individuals diagnosed with VVS (n = 11 female, mean age: 40 ± 16 years, mean body mass index: 24.9 ± 4.0 kg/m2) at supine rest and during HUT (80 degree angle). Individual ABP and CBV waveforms during VVS were input into a modified Windkessel model to calculate Ci and ohmic CVR. Gosling's pulsatility index (Pi; pulse amplitude/mean CBV) was calculated. RESULTS: Diastolic ABP, systolic ABP, mean ABP (72 ± 11 to 51 ± 12 mmHg), and CVR decreased progressively during presyncope (all P ≤ 0.04). As expected, systolic CBV was sustained (all P ≥ 0.29) while diastolic and mean CBV (51 ± 13 to 38 ± 13 mmHg) fell during presyncope (all P ≤ 0.04). Both Ci and Pi increased during presyncope (128 ± 97 and 60 ± 41%, respectively; all P ≤ 0.049) and were positively correlated (R2 = 0.79, P < 0.01). Increased Ci contributed to changes in mean CBV (P < 0.01) but decreased CVR did not (P = 0.28). CONCLUSIONS: These data provide evidence that Ci increases during presyncope in patients with VVS and is likely involved in the maintenance of systolic CBV during a fall in diastolic CBV. However, this regulation is not sufficient to preserve CBV in the presence of such extreme and progressive reductions in ABP.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38776557

RESUMEN

The aim of this study was to determine the effect of posture changes on vascular compliance in intracranial (brain) vs. extracranial vascular beds (forearm). Eighteen young adults (nine females) performed a supine-to-seated-to-standing protocol involving five minutes of rest in each position. Continuous blood pressure, middle cerebral artery (MCA) blood velocity, and brachial artery blood velocity were recorded at each posture. Three to five consecutive steady-state cardiac cycles at each posture were analyzed by a four-element lumped parameter modified Windkessel model to calculate vascular compliance. Mean arterial pressure (MAP) increased from supine to seated (76[9] vs 81[12] mmHg; P=0.006) and from supine to standing (76[9] vs 82[13] mmHg; P=0.034). Mean blood flow was greater in the MCA relative to the forearm (forearm: 40[5] ml•min-1, MCA: 224[17] ml•min-1; main effect P<0.001). Conversely, vascular resistance (forearm: 3.25[0.50] mmHg-1•ml•min-1, brain: 0.36[0.04] mmHg-1•ml•min-1; main effect P<0.001) and compliance (forearm: 0.010[0.001] ml•min-1•mmHg-1, brain: 0.005[0.001] ml•min-1•mmHg-1; main effect P=0.001) were greater in the forearm compared to the brain. Significant main effects of posture were observed with decreasing values in upright positions for mean blood flow (P=0.001) in both vascular beds, but not for resistance (P=0.163) or compliance (P=0.385). There were no significant interaction effects between vascular bed and posture for mean flow (P=0.057), resistance (P=0.258), or compliance (P=0.329). This study provides evidence that under steady state conditions, posture does not affect cerebrovascular compliance.

4.
Eur J Appl Physiol ; 124(5): 1323-1336, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38441688

RESUMEN

Early in the twentieth century, Walter B. Cannon (1871-1945) introduced his overarching hypothesis of "homeostasis" (Cannon 1932)-the ability to sustain physiological values within a narrow range necessary for life during periods of stress. Physical exercise represents a stress in which motor, respiratory and cardiovascular systems must be integrated across a range of metabolic stress to match oxygen delivery to oxygen need at the cellular level, together with appropriate thermoregulatory control, blood pressure adjustments and energy provision. Of these, blood pressure regulation is a complex but controlled variable, being the function of cardiac output and vascular resistance (or conductance). Key in understanding blood pressure control during exercise is the coordinating role of the autonomic nervous system. A long history outlines the development of these concepts and how they are integrated within the exercise context. This review focuses on the renaissance observations and thinking generated in the first three decades of the twentieth century that opened the doorway to new concepts of inquiry in cardiovascular regulation during exercise. The concepts addressed here include the following: (1) exercise and blood pressure, (2) central command, (3) neurovascular transduction with emphasis on the sympathetic nerve activity and the vascular end organ response, and (4) tonic neurovascular integration.


Asunto(s)
Presión Sanguínea , Ejercicio Físico , Humanos , Ejercicio Físico/fisiología , Presión Sanguínea/fisiología , Animales , Historia del Siglo XX , Fisiología/historia , Historia del Siglo XXI
5.
Cereb Circ Cogn Behav ; 6: 100198, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38298456

RESUMEN

Upright posture challenges the cerebrovascular system, leading to changes in middle cerebral artery velocity (MCAv) dynamics which are less evident at supine rest. Chronic alterations in MCAv have been linked to hypoperfusion states and the effect that this may have on cognition remains unclear. This study aimed to determine if MCAv and oscillatory metrics of MCAv (ex. pulsatility index, PI) during upright posture are i) associated with cognitive function and gait speed (GS) to a greater extent than during supine rest, and ii) are different between sexes. Beat-by-beat MCAv (transcranial Doppler ultrasound) and mean arterial pressure (MAP, plethysmography) were averaged for 30-seconds during supine-rest through a transition to standing for 53 participants (73±6yrs, 17 females). While controlling for age, multiple linear regressions predicting MoCA scores and GS from age, supine MCAv metrics, and standing MCAv metrics, were completed. Simple linear regressions predicting Montreal Cognitive Assessment (MoCA) score and GS from MCAv metrics were performed separately for females and males. Significance was set to p<0.05. Lower standing diastolic MCAv was a significant (p = 0.017) predictor of lower MoCA scores in participants with mild cognitive impairment, and this relationship only remained significant for males. Lower standing PI was associated with slower GS (p = 0.027, r=-0.306) in both sexes. Our results indicate a relationship between blunted MCAv and altered oscillatory flow profiles during standing, with lower MoCA scores and GS. These relationships were not observed in the supine position, indicating a unique relationship between standing measures of MCAv with cognitive and physical functions.

6.
Am J Physiol Regul Integr Comp Physiol ; 325(5): R629-R644, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37694305

RESUMEN

While biological sex affects the neurocirculatory adjustments to exercise, the effects of sex hormones on sympathetic action potential (AP) patterns and ensuing vascular transduction remain unknown. We tested the hypothesis that males, and females using oral contraceptive pills (OCPs), would demonstrate larger increases in sympathetic activation and sympathetic vascular transduction compared with naturally menstruating females during static handgrip exercise (SHG) and postexercise circulatory occlusion (PECO). Young males [n = 14, 25 (5) yr], females using OCPs [n = 16, 24 (6) yr], and naturally menstruating females [n = 18, 26 (4) yr] underwent assessments of multiunit muscle sympathetic nerve activity (MSNA)/AP discharge patterns (microneurography) and femoral artery blood flow (ultrasound) during fatiguing SHG at 40% maximum voluntary contraction and 2-min PECO. Sympathetic vascular transduction was determined as the quotient of the change in leg vascular conductance (LVC) and MSNA/AP discharge. Males demonstrated greater increases in APs/burst [males: Δ7 (6) vs. midluteal: Δ2 (3), P = 0.028] and total AP clusters [males: Δ5 (3) vs. midluteal: Δ2 (3), P = 0.008] compared with naturally menstruating females only but not those using OCPs during exercise (APs/burst: P = 0.171, total clusters: P = 0.455). Sympathetic vascular transduction of MSNA burst amplitude, APs/burst, and total AP clusters was greater in males and females using OCPs compared with naturally menstruating females (range: P = 0.004-0.044). In contrast, during PECO no group differences were observed in AP discharge (range: P = 0.510-0.872), and AP discharge was not related to LVC during PECO (range: P = 0.08-0.949). These data indicate that biological sex and OCP use impact the central generation of AP discharge, as well as the transduction of these neuronal messages into peripheral vasoconstriction during static exercise.

7.
J Appl Physiol (1985) ; 135(4): 753-762, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37616337

RESUMEN

We aimed to determine the influence of ischemic heart disease (IHD) and cardiac rehabilitation (CR) on cerebrovascular compliance index (Ci). Eleven (one female) patients with IHD (mean[SD]: 61[11] yr, 29[4] kg/m2) underwent 6 mo of CR, which consisted of ≥3 sessions/wk of aerobic and resistance training (20-60 min each). Ten (three female) similarly aged controls (CON) were tested at baseline as a comparator group. Middle cerebral artery velocity (MCAv) and mean arterial pressure were monitored continuously using transcranial Doppler ultrasound and finger photoplethysmography, respectively, during a rapid sit-to-stand maneuver. A Windkessel model was used to estimate cerebrovascular Ci every five cardiac cycles for a duration of 30 s. Cerebrovascular resistance was calculated as the quotient of MAP and MCAv. Two-way ANOVAs were used to determine whether cerebrovascular variables differ during postural transitions between groups and after CR. Baseline MCAv was higher in CON versus IHD (P = 0.014) and a time × group interaction was observed (P = 0.045) where MCAv decreased more in CON after standing. Compared with the precondition, CR had no effect on MCAv (condition P = 0.950) but a main effect of time indicated that MCAv decreased from the seated position in both conditions (time P = 0.013). Baseline cerebrovascular Ci was greater in IHD versus CON (P = 0.049) and the peak cerebrovascular Ci during the transition to standing was significantly higher in IHD compared with CON (interaction P = 0.047). CR did not affect cerebrovascular compliance (P = 0.452) and no time-by-condition interaction upon standing was present (P = 0.174). Baseline cerebrovascular Ci is higher in IHD at baseline compared with CON, but 6 mo of CR did not modify the transient increase in cerebrovascular Ci during sit-to-stand maneuvers.NEW & NOTEWORTHY Post-cardiac event cognitive impairment is common and exercise-based rehabilitation may be an effective intervention to mitigate cognitive decline. Microvascular damage due to high blood pressure pulsatility entering the brain is the putative mechanism of vascular dementia. Whether patients with ischemic heart disease exhibit lower cerebrovascular compliance, and if cardiac rehabilitation can improve cerebrovascular compliance is unknown. We observed that patients with ischemic heart disease have paradoxically higher cerebrovascular compliance, which is not affected by cardiac rehabilitation.


Asunto(s)
Rehabilitación Cardiaca , Disfunción Cognitiva , Isquemia Miocárdica , Humanos , Femenino , Corazón , Encéfalo
8.
Am J Physiol Heart Circ Physiol ; 325(4): H917-H932, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37594483

RESUMEN

Bursts of muscle sympathetic nerve activity (MSNA) and the ensuing vasoconstriction are pivotal determinants of beat-by-beat blood pressure regulation. Although age and sex impact blood pressure regulation, how these factors affect the central and peripheral arcs of the baroreflex remains unclear. In 27 young [25 (SD 3) yr] males (YM; n = 14) and females (YF; n = 13) and 23 older [71 (SD 5) yr] males (OM; n = 11) and females (OF; n = 12), femoral artery blood flow, blood pressure, and MSNA were recorded for 10 min of supine rest. Sympathetic baroreflex sensitivity (i.e., central arc) was quantified as the relationship between diastolic blood pressure and MSNA burst incidence. Signal averaging was used to determine sympathetic vascular transduction into leg vascular conductance (LVC) for 12 cardiac cycles following MSNA bursts (i.e., peripheral arc). Older adults demonstrated attenuated sympathetic transduction into LVC (both P < 0.001) following MSNA bursts, and smaller increases in sympathetic transduction as a function of MSNA burst size and firing pattern compared with young adults (range, P = 0.004-0.032). YM (r2 = 0.36; P = 0.032) and OM (r2 = 0.51; P = 0.014) exhibited an inverse relationship between the central and peripheral arcs of the baroreflex, whereas females did not (YF, r2 = 0.03, P = 0.621; OF, r2 = 0.06, P = 0.445). MSNA burst incidence was inversely related to sympathetic transduction in YM and OF (range, P = 0.03-0.046) but not in YF or OM (range, P = 0.360-0.603). These data indicate that age is associated with attenuated sympathetic vascular transduction, whereas age- and sex-specific changes are present in the relationship between the central and peripheral arcs of the baroreflex regulation of blood pressure.NEW & NOTEWORTHY Sympathetic vascular transduction is attenuated in older compared with young adults, regardless of biological sex. Males, but not females (regardless of age), demonstrate an inverse relationship between central (sympathetic baroreflex sensitivity) and peripheral (sympathetic vascular transduction) components of the baroreflex arc. Young males and older females exhibit an inverse relationship between resting sympathetic outflow and sympathetic vascular transduction. Our results indicate that age and sex exert independent and interactive effects on sympathetic vascular transduction and sympathetic neurohemodynamic balance in humans.


Asunto(s)
Barorreflejo , Arteria Femoral , Masculino , Femenino , Adulto Joven , Humanos , Anciano , Presión Sanguínea , Corazón , Extremidad Inferior
9.
J Appl Physiol (1985) ; 135(4): 717-725, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37560766

RESUMEN

The aim of the current study was to establish the interplay between blood flow patterns within a large cerebral artery and a downstream microvascular segment under conditions of transiently reduced mean arterial pressure (MAP). We report data from nine young, healthy participants (5 women; 26 ± 4 yr) acquired during a 15-s bout of sudden-onset lower body negative pressure (LBNP; -80 mmHg). Simultaneous changes in microvascular cerebral blood flow (CBF) and middle cerebral artery blood velocity (MCAvmean) were captured using diffuse correlation spectroscopy (DCS) and transcranial Doppler ultrasound (TCD), respectively. Brachial blood pressure (finger photoplethysmography) and TCD waveforms were extracted at baseline and during the nadir blood pressure (BP) response to LBNP and analyzed using a modified Windkessel model to calculate indices of cerebrovascular resistance (Ri) and compliance (Ci). Compared with baseline, rapid-onset LBNP decreased MAP by 22 ± 16% and Ri by 14 ± 10% (both P ≤ 0.03). Ci increased (322 ± 298%; P < 0.01) but MCAvmean (-8 ± 16%; P = 0.09) and CBF (-2 ± 3%; P = 0.29) were preserved. The results provide evidence that changes in both vascular resistance and compliance preserve CBF, as indexed by no significant changes in MCAvmean or DCS microvascular flow, during transient hypotension.NEW & NOTEWORTHY To characterize the relationship between cerebrovascular patterns within the large middle cerebral artery (MCA) and a downstream microvascular segment, we used a novel combination of transcranial Doppler ultrasound of the MCA and optical monitoring of a downstream microvascular segment, respectively, under conditions of transiently reduced mean arterial pressure (i.e., lower body negative pressure, -80 mmHg). A rapid increase in vessel compliance accompanied the maintenance of MCA blood velocity and downstream microvascular flow.


Asunto(s)
Circulación Cerebrovascular , Hipotensión , Humanos , Femenino , Circulación Cerebrovascular/fisiología , Hemodinámica , Presión Sanguínea/fisiología , Arteria Cerebral Media , Ultrasonografía Doppler Transcraneal , Velocidad del Flujo Sanguíneo
10.
JAMA Netw Open ; 6(7): e2324465, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37471089

RESUMEN

Importance: Exercise, cognitive training, and vitamin D may enhance cognition in older adults with mild cognitive impairment (MCI). Objective: To determine whether aerobic-resistance exercises would improve cognition relative to an active control and if a multidomain intervention including exercises, computerized cognitive training, and vitamin D supplementation would show greater improvements than exercise alone. Design, Setting, and Participants: This randomized clinical trial (the SYNERGIC Study) was a multisite, double-masked, fractional factorial trial that evaluated the effects of aerobic-resistance exercise, computerized cognitive training, and vitamin D on cognition. Eligible participants were between ages 65 and 84 years with MCI enrolled from September 19, 2016, to April 7, 2020. Data were analyzed from February 2021 to December 2022. Interventions: Participants were randomized to 5 study arms and treated for 20 weeks: arm 1 (multidomain intervention with exercise, cognitive training, and vitamin D), arm 2 (exercise, cognitive training, and placebo vitamin D), arm 3 (exercise, sham cognitive training, and vitamin D), arm 4 (exercise, sham cognitive training, and placebo vitamin D), and arm 5 (control group with balance-toning exercise, sham cognitive training, and placebo vitamin D). The vitamin D regimen was a 10 000 IU dose 3 times weekly. Main Outcomes and Measures: Primary outcomes were changes in ADAS-Cog-13 and Plus variant at 6 months. Results: Among 175 randomized participants (mean [SD] age, 73.1 [6.6] years; 86 [49.1%] women), 144 (82%) completed the intervention and 133 (76%) completed the follow-up (month 12). At 6 months, all active arms (ie, arms 1 through 4) with aerobic-resistance exercise regardless of the addition of cognitive training or vitamin D, improved ADAS-Cog-13 when compared with control (mean difference, -1.79 points; 95% CI, -3.27 to -0.31 points; P = .02; d = 0.64). Compared with exercise alone (arms 3 and 4), exercise and cognitive training (arms 1 and 2) improved the ADAS-Cog-13 (mean difference, -1.45 points; 95% CI, -2.70 to -0.21 points; P = .02; d = 0.39). No significant improvement was found with vitamin D. Finally, the multidomain intervention (arm 1) improved the ADAS-Cog-13 score significantly compared with control (mean difference, -2.64 points; 95% CI, -4.42 to -0.80 points; P = .005; d = 0.71). Changes in ADAS-Cog-Plus were not significant. Conclusions and Relevance: In this clinical trial, older adults with MCI receiving aerobic-resistance exercises with sequential computerized cognitive training significantly improved cognition, although some results were inconsistent. Vitamin D supplementation had no effect. Our findings suggest that this multidomain intervention may improve cognition and potentially delay dementia onset in MCI. Trial Registration: ClinicalTrials.gov Identifier: NCT02808676.


Asunto(s)
Disfunción Cognitiva , Entrenamiento Cognitivo , Humanos , Femenino , Anciano , Masculino , Disfunción Cognitiva/terapia , Disfunción Cognitiva/psicología , Cognición , Vitaminas/uso terapéutico , Vitaminas/farmacología , Vitamina D/uso terapéutico , Vitamina D/farmacología , Suplementos Dietéticos
11.
J Physiol ; 601(14): 2877-2898, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37083007

RESUMEN

The impact of age on exercise pressor responses is equivocal, likely because of sex-specific neuro-cardiovascular changes with age. However, assessments of the interactive effects of age and sex on muscle sympathetic nerve activity (MSNA) responses to exercise are lacking. We tested the hypothesis that older females would exhibit exaggerated increases in blood pressure (BP) and MSNA discharge patterns during handgrip exercise compared with similarly aged males and young adults. Twenty-five young (25 (2) years; mean (SD)) males (YM; n = 12) and females (YF; n = 13) and 23 older (71 (5) years) males (OM; n = 11) and females (OF; n = 12) underwent assessments of BP, total peripheral resistance (TPR; Modelflow) and MSNA action potential (AP) discharge patterns (microneurography) during incremental rhythmic handgrip exercise and post-exercise circulatory occlusion (PECO). OM demonstrated larger ∆BP and ∆TPR from baseline than YM (both P < 0.001) despite smaller increases in ∆APs/burst (OM: 0.4 (3) vs. YM: 5 (3) spikes/burst, P < 0.001) and ∆AP clusters/burst (OM: 0.1 (1) vs. YM: 1.8 (1) clusters/burst, P < 0.001) during exercise. Testosterone was lower in OM than YM (P < 0.001) and was inversely related to ∆BP but positively related to ∆AP clusters/burst in males (both P = 0.03). Conversely, YF and OF demonstrated similar ∆BP and ∆AP discharge during exercise (range: P = 0.75-0.96). Age and sex did not impact haemodynamics or AP discharge during PECO (range: P = 0.08-0.94). Altogether, age-related changes in neuro-cardiovascular reactivity exist in males but not females during fatiguing exercise and seem to be related to testosterone. This sex-specific impact of age underscores the importance of considering biological sex when assessing age-related changes in neuro-cardiovascular control during exercise. KEY POINTS: Older males have the largest increase in blood pressure despite having the smallest increases in sympathetic vasomotor outflow during rhythmic handgrip exercise. Young males demonstrate greater increases in sympathetic action potential (AP) discharge compared with young females during rhythmic handgrip exercise. Older adults (regardless of sex) demonstrate smaller increases in muscle sympathetic nerve activity (MSNA) burst amplitude and total AP clusters compared with young adults during exercise, as well as smaller increases in integrated MSNA burst frequency, incidence and total MSNA activity during post-exercise circulatory occlusion (i.e. independent effect of age). Males, but not females (regardless of age), reflexively modify AP conduction velocity during exercise. Our results indicate that age and sex independently and interactively impact the neural and cardiovascular homeostatic adjustments to fatiguing small muscle mass exercise.


Asunto(s)
Fuerza de la Mano , Fatiga Muscular , Masculino , Femenino , Adulto Joven , Humanos , Anciano , Fuerza de la Mano/fisiología , Músculo Esquelético/fisiología , Hemodinámica/fisiología , Presión Sanguínea/fisiología , Sistema Nervioso Simpático/fisiología
12.
Auton Neurosci ; 247: 103093, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37121103

RESUMEN

Previously, we demonstrated that integrated muscle sympathetic nerve activity (MSNA) responses to acute chemoreflex stress were augmented during the early follicular (EF) phase of the menstrual cycle relative to both the midluteal (ML) phase and males. These differences were most pronounced in the amplitude component of MSNA, suggesting EF-driven increases in action potential (AP) recruitment in females. Therefore, we tested the hypothesis that neural recruitment, quantified as MSNA AP discharge patterns during acute chemoreflex stress, is potentiated during EF. We retrospectively analyzed MSNA data from 9 young males and 7 young females tested during the EF and ML phases at rest and during a voluntary end-inspiratory hypercapnic-hypoxic apnea. Sympathetic AP discharge patterns were analyzed using wavelet-based methodology. Apnea-driven increases in AP frequency and AP content per integrated burst were greater in EF relative to ML (APs/min: P = 0.02; APs/burst: P = 0.03) and to males (APs/min: P = 0.04; APs/burst: P = 0.02). The recruitment of new larger AP clusters was greater in EF than ML (P < 0.01) but not different from males (P = 0.50). Interestingly, we observed a positive association between the magnitude of change in the estrogen/progesterone ratio from EF to ML and the change in AP cluster recruitment, as both decreased from EF to ML (R2 = 0.82; P < 0.01). This suggests that the enhanced progesterone dominance over estrogen during ML may blunt the recruitment of new larger APs. Overall, these data indicate that both sex and the menstrual cycle impact AP recruitment patterns in a manner which may be mediated, at least in part, by gonadal hormones.


Asunto(s)
Apnea , Progesterona , Masculino , Femenino , Humanos , Potenciales de Acción , Progesterona/farmacología , Estudios Retrospectivos , Hipoxia , Sistema Nervioso Simpático/fisiología , Ciclo Menstrual , Estrógenos/farmacología , Músculo Esquelético , Presión Sanguínea
13.
Can J Diabetes ; 47(3): 250-256, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36858923

RESUMEN

OBJECTIVES: Type 2 diabetes is associated with deficits in cognition and brain health. Individuals with at least 1 risk factor for diabetes (i.e. obesity, prediabetes) already experience some neurocognitive impairment and are at risk for further decline. One way to combat these deficits is through exercise, but it is unknown whether resistance exercise can improve these functions in this at-risk group. METHODS: This study was a pilot randomized controlled trial. Participants were 60 to 80 years of age and had prediabetes (fasting capillary glucose 6.1 to 6.9 mmol/L) and/or were living with overweight or obesity (body mass index ≥25 kg/m2). Participants completed resistance training or balance and stretching exercises (control) thrice weekly for 6 months. Neuropsychological tests were used to assess cognitive ability, whereas functional magnetic resonance imaging was used to examine brain activation patterns. RESULTS: Resistance training led to improvements in task-switching, attention, and conflict resolution, as well as improved patterns of brain activation that may mimic healthy older adults. CONCLUSIONS: Resistance exercise may serve as an effective behavioural strategy to improve neurocognition in older adults at risk for type 2 diabetes. A large-scale powered trial is needed to further explore these findings.


Asunto(s)
Diabetes Mellitus Tipo 2 , Estado Prediabético , Entrenamiento de Fuerza , Humanos , Anciano , Estado Prediabético/terapia , Proyectos Piloto , Cognición/fisiología , Terapia por Ejercicio/métodos , Encéfalo/diagnóstico por imagen , Obesidad
14.
J Neurophysiol ; 129(4): 927-936, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36947882

RESUMEN

This study tested the hypothesis that during fatiguing volitional exercise in humans, descending cortical signals and ascending skeletal muscle metaboreflex signals exert divergent control over baroreflex resetting of sympathetic action potential (AP) discharge. We quantified the baroreflex gain for sympathetic AP clusters within the muscle sympathetic nerve activity neurogram (peroneal microneurography and continuous wavelet transform) during baseline (BSL), the first 2-min of a 5-min isometric handgrip (20% of maximal effort; IHG1), the last 2-min of IHG (IHG2), and during postexercise circulatory occlusion (PECO) in seven healthy participants. AP baroreflex threshold gain was measured as the slope of the linear relationship between AP probability (%) versus diastolic blood pressure (DBP; mmHg) for 10 normalized AP clusters. Compared with BSL, during IHG1, AP baroreflex threshold functions were only reset to greater DBP and baroreflex gain was unaffected. Compared with BSL, during IHG2 and PECO, baroreflex functions were reset to greater DBP and to greater AP firing probabilities, with medium-sized APs demonstrating the largest upward resetting (e.g., cluster 3 BSL: 26 ± 7%, cluster 3 IHG2: 78 ± 22%, cluster 3 PECO: 88 ± 46%). Compared with BSL, AP baroreflex threshold gain was not different during IHG2 but was increased during PECO, with medium-sized APs demonstrating the largest increase in baroreflex gain (e.g., cluster 3 BSL: -6.31 ± 3.1%/mmHg, cluster 3 IHG2: -6.18 ± 5.4%/mmHg, cluster 3 PECO: -12.13 ± 6.5%/mmHg). These findings indicate that during IHG exercise, descending cortical signaling and ascending skeletal muscle metaboreceptor signals differentially affect baroreflex resetting of subpopulations of human muscle sympathetic postganglionic neurons.NEW & NOTEWORTHY This study provides new insight to baroreflex resetting of MSNA during exercise in humans. Both fatiguing IHG and PECO reset baroreflex control of sympathetic APs to higher blood pressures and greater MSNA. However, only PECO increased baroreflex threshold gain of medium-sized sympathetic APs, an effect that was concealed when focusing on the integrated MSNA neurogram to quantify baroreflex gain. These data suggest that descending central versus ascending muscle metaboreflex mechanisms differentially affect baroreflex resetting of sympathetic APs.


Asunto(s)
Barorreflejo , Fuerza de la Mano , Humanos , Barorreflejo/fisiología , Potenciales de Acción , Fuerza de la Mano/fisiología , Presión Sanguínea/fisiología , Sistema Nervioso Simpático/fisiología , Músculo Esquelético/fisiología , Frecuencia Cardíaca
16.
Am J Physiol Regul Integr Comp Physiol ; 324(4): R536-R546, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36802950

RESUMEN

Insulin acts centrally to stimulate sympathetic vasoconstrictor outflow to skeletal muscle and peripherally to promote vasodilation. Given these divergent actions, the "net effect" of insulin on the transduction of muscle sympathetic nerve activity (MSNA) into vasoconstriction and thus, blood pressure (BP) remains unclear. We hypothesized that sympathetic transduction to BP would be attenuated during hyperinsulinemia compared with baseline. In 22 young healthy adults, MSNA (microneurography), and beat-to-beat BP (Finometer or arterial catheter) were continuously recorded, and signal-averaging was performed to quantify the mean arterial pressure (MAP) and total vascular conductance (TVC; Modelflow) responses following spontaneous bursts of MSNA at baseline and during a euglycemic-hyperinsulinemic clamp. Hyperinsulinemia significantly increased MSNA burst frequency and mean burst amplitude (baseline: 46 ± 6 au; insulin: 65 ± 16 au, P < 0.001) but did not alter MAP. The peak MAP (baseline: 3.2 ± 1.5 mmHg; insulin: 3.0 ± 1.9 mmHg, P = 0.67) and nadir TVC (P = 0.45) responses following all MSNA bursts were not different between conditions indicating preserved sympathetic transduction. However, when MSNA bursts were segregated into quartiles based on their amplitudes at baseline and compared with similar amplitude bursts during hyperinsulinemia, the peak MAP and TVC responses were blunted (e.g., largest burst quartile: MAP, baseline: Δ4.4 ± 1.7 mmHg; hyperinsulinemia: Δ3.0 ± 0.8 mmHg, P = 0.02). Notably, ∼15% of bursts during hyperinsulinemia exceeded the size of any burst at baseline, yet the MAP/TVC responses to these larger bursts (MAP, Δ4.9 ± 1.4 mmHg) did not differ from the largest baseline bursts (P = 0.47). These findings indicate that increases in MSNA burst amplitude contribute to the overall maintenance of sympathetic transduction during hyperinsulinemia.


Asunto(s)
Presión Arterial , Hiperinsulinismo , Humanos , Adulto , Presión Sanguínea/fisiología , Vasoconstrictores , Insulina , Músculo Esquelético/inervación , Sistema Nervioso Simpático , Frecuencia Cardíaca/fisiología
17.
Scand J Med Sci Sports ; 33(5): 586-596, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36587373

RESUMEN

BACKGROUND: This study tested the hypothesis that training reduces resting sympathetic activity and improves baroreflex control in both hypertensive and normotensive men but reduces blood pressure only in hypertensive men. METHODS: Middle-aged/older un-medicated stage-1 hypertensive males (mean age 55 ± 3 years; n = 13) and normotensive controls (mean age 60 ± 5 years; n = 12) participated in 8 weeks of supervised high-intensity interval spinning training. Before and after training, muscle sympathetic nerve activity (MSNA) and blood pressure were measured at rest and during a sympatho-excitatory cold pressor test (CPT). Based on the measurements, baroreceptor sensitivity and baroreceptor threshold were calculated. RESULTS: Resting MSNA and baroreceptor sensitivity were similar for the hypertensive and the normotensive groups. Training lowered MSNA (p < 0.05), expressed as burst frequency (burst/min), overall, and to a similar extent, in both groups (17% and 27%, respectively, in hypertensive and normotensive group), whereas blood pressure was only significantly (p < 0.05) lowered (by 4 mmHg in both systolic and diastolic pressure) in the hypertensive group. Training did not (p > 0.05) alter the MSNA or blood pressure response to CPT or increase baroreceptor sensitivity but reduced (p < 0.05) the baroreceptor threshold with a main effect for both groups. Training adherence and intensity were similar in both groups yet absolute maximal oxygen uptake increased by 15% in the normotensive group only. CONCLUSION: The dissociation between the training induced changes in resting MSNA, lack of change in baroreflex sensitivity and the change in blood pressure, suggests that MSNA is not a main cause of the blood pressure reduction with exercise training in un-medicated middle-aged/older men.


Asunto(s)
Hipertensión , Músculo Esquelético , Masculino , Persona de Mediana Edad , Humanos , Anciano , Presión Sanguínea/fisiología , Frecuencia Cardíaca/fisiología , Músculo Esquelético/fisiología , Barorreflejo/fisiología , Ejercicio Físico/fisiología , Sistema Nervioso Simpático/fisiología
18.
Eur J Heart Fail ; 25(2): 201-210, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36459000

RESUMEN

AIMS: Patients with sympathetic excess are those most likely to benefit from novel interventions targeting the autonomic nervous system. To inform such personalized therapy, we identified determinants of augmented muscle sympathetic nerve activity (MSNA) in heart failure, versus healthy controls. METHODS AND RESULTS: We compared data acquired in 177 conventionally-treated, stable non-diabetic patients in sinus rhythm, aged 18-79 years (149 males; 28 females; left ventricular ejection fraction [LVEF] 25 ± 11% [mean ± standard deviation]; range 5-60%), and, concurrently, under similar conditions, in 658 healthy, normotensive volunteers (398 males; aged 18-81 years). In heart failure, MSNA ranged between 7 and 90 bursts·min-1 , proportionate to heart rate (p < 0.0001) and body mass index (BMI) (p = 0.03), but was unrelated to age, blood pressure, or drug therapy. Mean MSNA, adjusted for age, sex, BMI, and heart rate, was greater in heart failure (+14.2 bursts·min-1 ; 95% confidence interval [CI] 12.1-16.3; p < 0.0001), but lower in women (-5.0 bursts·min-1 ; 95% CI 3.4-6.6; p < 0.0001). With spline modeling, LVEF accounted for 9.8% of MSNA variance; MSNA related inversely to LVEF below an inflection point of ∼21% (p < 0.006), but not above. Burst incidence was greater in ischaemic than dilated cardiomyopathy (p = 0.01), and patients with sleep apnoea (p = 0.03). Burst frequency correlated inversely with stroke volume (p < 0.001), cardiac output (p < 0.001), and peak oxygen consumption (p = 0.002), and directly with norepinephrine (p < 0.0001) and peripheral resistance (p < 0.001). CONCLUSION: Burst frequency and incidence exceeded normative values in only ∼53% and ∼33% of patients. Such diversity encourages selective deployment of sympatho-modulatory therapies. Clinical characteristics can highlight individuals who may benefit from future personalized interventions targeting pathological sympathetic activation.


Asunto(s)
Insuficiencia Cardíaca , Masculino , Humanos , Femenino , Volumen Sistólico/fisiología , Función Ventricular Izquierda , Músculos/inervación , Sistema Nervioso Simpático , Presión Sanguínea/fisiología , Frecuencia Cardíaca/fisiología , Músculo Esquelético
19.
Am J Physiol Heart Circ Physiol ; 324(1): H100-H108, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36459447

RESUMEN

Increasing evidence indicates that cerebrovascular compliance contributes to the dynamic regulation of cerebral blood flow but the mechanisms regulating cerebrovascular compliance in humans are unknown. This retrospective study investigated the impact of neural, endothelial, and myogenic mechanisms on the regulation of vascular compliance in the cerebral vascular bed compared with the forearm vascular bed. An index of vascular compliance (Ci) was assessed using a Windkessel model applied to blood pressure waveforms (finger photoplethysmography) and corresponding middle cerebral artery blood velocity or brachial artery blood velocity waveforms (Doppler ultrasound). Data were analyzed during a 5-min baseline period (10 waveforms) under control conditions and during distinct sympathetic blockade (experiment 1, phentolamine; 10 adults), cholinergic blockade (experiment 2, glycopyrrolate; 9 adults), and myogenic blockade (experiment 3, nicardipine; 14 adults). In experiment 1, phentolamine increased Ci similarly in the cerebral vascular bed (131 ± 135%) and forearm vascular bed (93 ± 75%; P = 0.45). In experiment 2, glycopyrrolate increased cerebrovascular Ci (72 ± 61%) and forearm vascular Ci (74 ± 64%) to a similar extent (P = 0.88). In experiment 3, nicardipine increased Ci but to a greater extent in the cerebral vascular bed (88 ± 88%) than forearm vascular bed (20 ± 45%; P = 0.01). Therefore, adrenergic, cholinergic, and myogenic mechanisms contribute to the regulation of cerebrovascular and forearm vascular compliance. However, myogenic mechanisms appear to exert more specific control over vascular compliance in the brain relative to the forearm.NEW & NOTEWORTHY Vascular compliance represents an important determinant in the dynamics and regulation of blood flow through a vascular bed. However, the mechanisms that regulate vascular compliance remain poorly understood. This study examined the impact of neural, endothelial, and myogenic mechanisms on cerebrovascular compliance compared with forearm vascular compliance. Distinct pharmacological blockade of α-adrenergic, endothelial muscarinic, and myogenic inputs altered cerebrovascular and forearm vascular compliance. These results further our understanding of vascular control and blood flow regulation in the brain.


Asunto(s)
Antebrazo , Nicardipino , Adulto , Humanos , Antebrazo/irrigación sanguínea , Fentolamina/farmacología , Glicopirrolato/farmacología , Estudios Retrospectivos , Presión Sanguínea , Circulación Cerebrovascular/fisiología , Adrenérgicos , Colinérgicos , Flujo Sanguíneo Regional
20.
Hypertension ; 80(2): 291-301, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36065805

RESUMEN

BACKGROUND: We tested the hypothesis that women who develop gestational hypertension (GH) display abnormal sympathetic action potential (AP) discharge patterns during late pregnancy (32-36 weeks), both at supine rest and during postural stress. METHODS: Thirteen nonpregnant, female controls (nonpregnant controls [CTRL]) and 32 pregnant women participated; 14 had low-risk (no personal history of GH) normal pregnancies (LR-NP), 10 had high-risk (personal history of GH) normal pregnancies (HR-NP), and 8 developed GH. We measured heart rate, blood pressure, and muscle sympathetic nerve activity (microneurography) at supine rest and 60° head-up tilt. Sympathetic AP patterns were studied using wavelet-based methodology. RESULTS: At rest, muscle sympathetic nerve activity burst frequency was elevated in LR-NP, HR-NP, and GH versus CTRL (all P≤0.01); however, the AP content per integrated burst was augmented only in GH (20±5 spikes/burst), compared with CTRL (8±3 spikes/burst), LR-NP (9±2 spikes/burst) and HR-NP (11±4 spikes/burst; all P<0.0001). Thus, total AP firing frequency was greater in GH versus each of CTRL, LR-NP, and HR-NP (all P<0.0001). In pregnancy, AP frequency is related directly to systolic (R2=46%) and diastolic (R2=20%) blood pressure (both P≤0.01). Unlike CTRL (both P<0.01), women who developed GH were unable to increase within-burst AP firing (P=0.71) or recruit latent subpopulations of larger-sized APs (P=0.72) in response to head-up tilt, perhaps related to a ceiling-effect; however, total AP firing frequency in the upright posture was elevated in the GH cohort versus CTRL, LR-NP, and HR-NP (all P<0.05). CONCLUSIONS: Women who develop GH display aberrant sympathetic AP firing patterns in both the supine and upright postures.


Asunto(s)
Hipertensión Inducida en el Embarazo , Humanos , Femenino , Embarazo , Potenciales de Acción , Presión Sanguínea/fisiología , Sistema Nervioso Simpático , Frecuencia Cardíaca , Músculo Esquelético/inervación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...