Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Electron Mater ; : 1-10, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37363789

RESUMEN

Micro- and nanostructures in vapor-phase-grown AlN on face-to-face annealed sputtered AlN (FFA Sp-AlN) templates formed on nanopatterned sapphire substrates (NPSS) were comprehensively analyzed using transmission electron microscopy. The comparison between metal-organic vapor-phase epitaxy-grown AlN/FFA Sp-AlN/hole-type NPSS (Sample MOH) and hydride vapor-phase epitaxy-grown AlN/FFA Sp-AlN/cone-type NPSS (Sample HVC) showed apparent differences in the morphology of dislocation propagation, presence of voids, shape of polarity inversion boundaries, and crystal structure on the slope region of NPSS. Notably, cross-sectional and plan-view observations revealed that the quality of FFA Sp-AlN significantly affects the threading dislocation density in the vapor-phase-grown layer. At the slope region of the AlN/NPSS interface, γ-AlON was observed in the MOH sample, while highly misaligned AlN grains were observed in the HVC sample. These characteristic crystal structures affect the occurrence of dislocations via different mechanisms in each sample. This study provides practical information for strategically controlling the micro- and nanostructures formed in AlN/NPSS structures for high-performance AlGaN-based deep-ultraviolet emitters. Supplementary Information: The online version contains supplementary material available at 10.1007/s11664-023-10348-3.

2.
Nanotechnology ; 27(42): 425401, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27632684

RESUMEN

In this work, we demonstrate homogeneously distributed In0.3Ga0.7N/GaN quantum disks (QDs), with an average diameter below 10 nm and a high density of 2.1 × 10(11) cm(-2), embedded in 20 nm tall nanopillars. The scalable top-down fabrication process involves the use of self-assembled ferritin bio-templates as the etch mask, spin coated on top of a strained In0.3Ga0.7N/GaN single quantum well (SQW) structure, followed by a neutral beam etch (NBE) method. The small dimensions of the iron cores inside ferritin and nearly damage-free process enabled by the NBE jointly contribute to the observation of photoluminescence (PL) from strain-relaxed In0.3Ga0.7N/GaN QDs at 6 K. The large blueshift of the peak wavelength by over 70 nm manifests a strong reduction of the quantum-confined Stark effect (QCSE) within the QD structure, which also agrees well with the theoretical prediction using a 3D Schrödinger equation solver. The current results hence pave the way towards the realization of large-scale III-N quantum structures using the combination of bio-templates and NBE, which is vital for the development of next-generation lighting and communication devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...