Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(2)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36839646

RESUMEN

AAV gene therapy for ocular disease has become a reality with the market authorisation of LuxturnaTM for RPE65-linked inherited retinal degenerations and many AAV gene therapies currently undergoing phase III clinical trials. Many ocular disorders have a mitochondrial involvement from primary mitochondrial disorders such as Leber hereditary optic neuropathy (LHON), predominantly due to mutations in genes encoding subunits of complex I, to Mendelian and multifactorial ocular conditions such as dominant optic atrophy, glaucoma and age-related macular degeneration. In this study, we have optimised the nuclear yeast gene, NADH-quinone oxidoreductase (NDI1), which encodes a single subunit complex I equivalent, creating a candidate gene therapy to improve mitochondrial function, independent of the genetic mutation driving disease. Optimisation of NDI1 (ophNdi1) substantially increased expression in vivo, protected RGCs and increased visual function, as assessed by optokinetic and photonegative response, in a rotenone-induced murine model. In addition, ophNdi1 increased cellular oxidative phosphorylation and ATP production and protected cells from rotenone insult to a significantly greater extent than wild type NDI1. Significantly, ophNdi1 treatment of complex I deficient patient-derived fibroblasts increased oxygen consumption and ATP production rates, demonstrating the potential of ophNdi1 as a candidate therapy for ocular disorders where mitochondrial deficits comprise an important feature.

2.
Front Neurosci ; 14: 571479, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324145

RESUMEN

Optic Atrophy 1 (OPA1) is a mitochondrially targeted GTPase that plays a pivotal role in mitochondrial health, with mutations causing severe mitochondrial dysfunction and typically associated with Dominant Optic Atrophy (DOA), a progressive blinding disease involving retinal ganglion cell loss and optic nerve damage. In the current study, we investigate the use of codon-optimized versions of OPA1 isoform 1 and 7 as potential therapeutic interventions in a range of in vitro and in vivo models of mitochondrial dysfunction. We demonstrate that both isoforms perform equally well in ameliorating mitochondrial dysfunction in OPA1 knockout mouse embryonic fibroblast cells but that OPA1 expression levels require tight regulation for optimal benefit. Of note, we demonstrate for the first time that both OPA1 isoform 1 and 7 can be used independently to protect spatial visual function in a murine model of retinal ganglion cell degeneration caused by mitochondrial dysfunction, as well as providing benefit to mitochondrial bioenergetics in DOA patient derived fibroblast cells. These results highlight the potential value of OPA1-based gene therapy interventions.

3.
Front Neurosci ; 14: 891, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973439

RESUMEN

With marketing approval of the first ocular gene therapy, and other gene therapies in clinical trial, treatments for inherited retinal degenerations (IRDs) have become a reality. Biallelic mutations in the tubby like protein 1 gene (TULP1) are causative of IRDs in humans; a mouse knock-out model (Tulp1-/-) is characterized by a similar disease phenotype. We developed a Tulp1 supplementation therapy for Tulp1-/- mice. Utilizing subretinal AAV2/5 delivery at postnatal day (p)2-3 and rhodopsin-kinase promoter (GRK1P) we targeted Tulp1 to photoreceptor cells exploring three doses, 2.2E9, 3.7E8, and 1.2E8 vgs. Tulp1 mRNA and TULP1 protein were assessed by RT-qPCR, western blot and immunocytochemistry, and visual function by electroretinography. Our results indicate that TULP1 was expressed in photoreceptors; achieved levels of Tulp1 mRNA and protein were similar to wild type levels at p20. However, the thickness of the outer nuclear layer (ONL) did not improve in treated Tulp1-/- mice. There was a small and transient electroretinography benefit in the treated retinas at 4 weeks of age (not observed by 6 weeks) when using 3.7E8 vg dose. Dark-adapted mixed rod and cone a- and b-wave amplitudes were 24.3 ± 13.5 µV and 52.2 ± 31.7 µV in treated Tulp1-/- mice, which were significantly different (p < 0.001, t-test), from those detected in untreated eyes (7.1 ± 7.0 µV and 9.4 ± 15.1 µV, respectively). Our results indicate that Tulp1 supplementation in photoreceptors may not be sufficient to provide robust benefit in Tulp1-/- mice. As such, further studies are required to fine tune the Tulp1 supplementation therapy, which, in principle, should rescue the Tulp1-/- phenotype.

4.
Stem Cell Reports ; 15(1): 67-79, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32531192

RESUMEN

RP2 mutations cause a severe form of X-linked retinitis pigmentosa (XLRP). The mechanism of RP2-associated retinal degeneration in humans is unclear, and animal models of RP2 XLRP do not recapitulate this severe phenotype. Here, we developed gene-edited isogenic RP2 knockout (RP2 KO) induced pluripotent stem cells (iPSCs) and RP2 patient-derived iPSC to produce 3D retinal organoids as a human retinal disease model. Strikingly, the RP2 KO and RP2 patient-derived organoids showed a peak in rod photoreceptor cell death at day 150 (D150) with subsequent thinning of the organoid outer nuclear layer (ONL) by D180 of culture. Adeno-associated virus-mediated gene augmentation with human RP2 rescued the degeneration phenotype of the RP2 KO organoids, to prevent ONL thinning and restore rhodopsin expression. Notably, these data show that 3D retinal organoids can be used to model photoreceptor degeneration and test potential therapies to prevent photoreceptor cell death.


Asunto(s)
Proteínas de Unión al GTP/genética , Células Madre Pluripotentes Inducidas/patología , Proteínas de la Membrana/genética , Modelos Biológicos , Organoides/patología , Retina/patología , Retinitis Pigmentosa/genética , Muerte Celular , Supervivencia Celular , Dependovirus , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Organoides/ultraestructura , Retina/ultraestructura , Células Fotorreceptoras Retinianas Bastones/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...