Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877149

RESUMEN

Identification of O-glycopeptides from tandem mass spectrometry data is complicated by the near complete dissociation of O-glycans from the peptide during collisional activation and by the combinatorial explosion of possible glycoforms when glycans are retained intact in electron-based activation. The recent O-Pair search method provides an elegant solution to these problems, using a collisional activation scan to identify the peptide sequence and total glycan mass, and a follow-up electron-based activation scan to localize the glycosite(s) using a graph-based algorithm in a reduced search space. Our previous O-glycoproteomics methods with MSFragger-Glyco allowed for extremely fast and sensitive identification of O-glycopeptides from collisional activation data but had limited support for site localization of glycans and quantification of glycopeptides. Here, we report an improved pipeline for O-glycoproteomics analysis that provides proteome-wide, site-specific, quantitative results by incorporating the O-Pair method as a module within FragPipe. In addition to improved search speed and sensitivity, we add flexible options for oxonium ion-based filtering of glycans and support for a variety of MS acquisition methods and provide a comparison between all software tools currently capable of O-glycosite localization in proteome-wide searches.

2.
bioRxiv ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38915658

RESUMEN

Studying protein isoforms is an essential step in biomedical research; at present, the main approach for analyzing proteins is via bottom-up mass spectrometry proteomics, which return peptide identifications, that are indirectly used to infer the presence of protein isoforms. However, the detection and quantification processes are noisy; in particular, peptides may be erroneously detected, and most peptides, known as shared peptides, are associated to multiple protein isoforms. As a consequence, studying individual protein isoforms is challenging, and inferred protein results are often abstracted to the gene-level or to groups of protein isoforms. Here, we introduce IsoBayes, a novel statistical method to perform inference at the isoform level. Our method enhances the information available, by integrating mass spectrometry proteomics and transcriptomics data in a Bayesian probabilistic framework. To account for the uncertainty in the measurement process, we propose a two-layer latent variable approach: first, we sample if a peptide has been correctly detected (or, alternatively filter peptides); second, we allocate the abundance of such selected peptides across the protein(s) they are compatible with. This enables us, starting from peptide-level data, to recover protein-level data; in particular, we: i) infer the presence/absence of each protein isoform (via a posterior probability), ii) estimate its abundance (and credible interval), and iii) target isoforms where transcript and protein relative abundances significantly differ. We benchmarked our approach in simulations, and in two multi-protease real datasets: our method displays good sensitivity and specificity when detecting protein isoforms, its estimated abundances highly correlate with the ground truth, and can detect changes between protein and transcript relative abundances. IsoBayes is freely distributed as a Bioconductor R package, and is accompanied by an example usage vignette.

3.
Proteomics ; 24(8): e2300234, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38487981

RESUMEN

The identification of proteoforms by top-down proteomics requires both high quality fragmentation spectra and the neutral mass of the proteoform from which the fragments derive. Intact proteoform spectra can be highly complex and may include multiple overlapping proteoforms, as well as many isotopic peaks and charge states. The resulting lower signal-to-noise ratios for intact proteins complicates downstream analyses such as deconvolution. Averaging multiple scans is a common way to improve signal-to-noise, but mass spectrometry data contains artifacts unique to it that can degrade the quality of an averaged spectra. To overcome these limitations and increase signal-to-noise, we have implemented outlier rejection algorithms to remove outlier measurements efficiently and robustly in a set of MS1 scans prior to averaging. We have implemented averaging with rejection algorithms in the open-source, freely available, proteomics search engine MetaMorpheus. Herein, we report the application of the averaging with rejection algorithms to direct injection and online liquid chromatography mass spectrometry data. Averaging with rejection algorithms demonstrated a 45% increase in the number of proteoforms detected in Jurkat T cell lysate. We show that the increase is due to improved spectral quality, particularly in regions surrounding isotopic envelopes.


Asunto(s)
Proteoma , Proteómica , Proteoma/análisis , Proteómica/métodos , Procesamiento Proteico-Postraduccional , Algoritmos , Espectrometría de Masas
5.
Methods Mol Biol ; 2426: 35-66, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36308684

RESUMEN

MetaMorpheus is a free and open-source software program dedicated to the comprehensive analysis of proteomic data. In bottom-up proteomics, protein samples are digested into peptides prior to chromatographic separation and tandem mass spectrometric analysis. The resulting fragmentation spectra are subsequently analyzed with search software programs to obtain peptide identifications and infer the presence of proteins in the samples. MetaMorpheus seeks to maximize the information gleaned from proteomic data through the use of (a) mass calibration, (b) post-translational modification discovery, (c) multiple search algorithms, which aid in the analysis of data from traditional, crosslinking, and glycoproteomic experiments, (d) isotope-based or label-free quantification, (e) multi-protease protein inference, and (f) spectral annotation and data visualization capabilities. This protocol provides detailed descriptions of how use MetaMorpheus and how to customize data analysis workflows using MetaMorpheus tasks to meet the specific needs of the user.


Asunto(s)
Análisis de Datos , Proteómica , Proteómica/métodos , Programas Informáticos , Espectrometría de Masas en Tándem/métodos , Péptidos/química , Proteínas/química , Algoritmos , Bases de Datos de Proteínas
6.
Methods Mol Biol ; 2426: 303-313, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36308694

RESUMEN

The rapid and accurate quantification of peptides is a critical element of modern proteomics that has become increasingly challenging as proteomic data sets grow in size and complexity. We present here FlashLFQ, a computer program for high-speed label-free quantification of peptides and proteins following a search of bottom-up mass spectrometry data. FlashLFQ is approximately an order of magnitude faster than established label-free quantification methods and can quantify data-dependent analysis (DDA) search results from any proteomics search program. It is available as a graphical user interface program, a command line tool, a Docker image, and integrated into the MetaMorpheus search software.


Asunto(s)
Proteínas , Proteómica , Proteómica/métodos , Proteínas/química , Péptidos/química , Programas Informáticos , Espectrometría de Masas/métodos
7.
J Proteome Res ; 21(11): 2609-2618, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36206157

RESUMEN

Tandem mass spectrometry (MS/MS) is widely employed for the analysis of complex proteomic samples. While protein sequence database searching and spectral library searching are both well-established peptide identification methods, each has shortcomings. Protein sequence databases lack fragment peak intensity information, which can result in poor discrimination between correct and incorrect spectrum assignments. Spectral libraries usually contain fewer peptides than protein sequence databases, which limits the number of peptides that can be identified. Notably, few post-translationally modified peptides are represented in spectral libraries. This is because few search engines can both identify a broad spectrum of PTMs and create corresponding spectral libraries. Also, programs that generate spectral libraries using deep learning approaches are not yet able to accurately predict spectra for the vast majority of PTMs. Here, we address these limitations through use of a hybrid search strategy that combines protein sequence database and spectral library searches to improve identification success rates and sensitivity. This software uses Global PTM Discovery (G-PTM-D) to produce spectral libraries for a wide variety of different PTMs. These features, along with a new spectrum annotation and visualization tool, have been integrated into the freely available and open-source search engine MetaMorpheus.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Bases de Datos de Proteínas , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Análisis de Datos , Programas Informáticos , Péptidos/análisis , Biblioteca de Péptidos , Algoritmos
8.
J Proteome Res ; 21(10): 2443-2452, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36108102

RESUMEN

The SARS-CoV-2 omicron variant presented significant challenges to the global effort to counter the pandemic. SARS-CoV-2 is predicted to remain prevalent for the foreseeable future, making the ability to identify SARS-CoV-2 variants imperative in understanding and controlling the pandemic. The predominant variant discovery method, genome sequencing, is time-consuming, insensitive, and expensive. Ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) offers an exciting alternative detection modality provided that variant-containing peptide markers are sufficiently detectable from their tandem mass spectra (MS/MS). We have synthesized model tryptic peptides of SARS-CoV-2 variants alpha, beta, gamma, delta, and omicron and evaluated their signal intensity, HCD spectra, and reverse phase retention time. Detection limits of 781, 781, 65, and 65 amol are obtained for the molecular ions of the proteotypic peptides, beta (QIAPGQTGNIADYNYK), gamma (TQLPSAYTNSFTR), delta (VGGNYNYR), and omicron (TLVKQLSSK), from neat solutions. These detection limits are on par with the detection limits of a previously reported proteotypic peptide from the SARS-CoV-2 spike protein, HTPINLVR. This study demonstrates the potential to differentiate SARS-CoV-2 variants through their proteotypic peptides with an approach that is broadly applicable across a wide range of pathogens.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Cromatografía Liquida , Humanos , Péptidos/química , Péptidos/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus , Espectrometría de Masas en Tándem
9.
Methods Mol Biol ; 2500: 67-81, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35657588

RESUMEN

Proteoform Suite is an interactive software program for the identification and quantification of intact proteoforms from mass spectrometry data. Proteoform Suite identifies proteoforms observed by intact-mass (MS1) analysis. In intact-mass analysis, unfragmented experimental proteoforms are compared to a database of known proteoform sequences and to one another, searching for mass differences corresponding to well-known post-translational modifications or amino acids. Intact-mass analysis enables proteoforms observed in the MS1 data without MS/MS (MS2) fragmentation to be identified. Proteoform Suite further facilitates the construction and visualization of proteoform families, which are the sets of proteoforms derived from individual genes. Bottom-up peptide identifications and top-down (MS2) proteoform identifications can be integrated into the Proteoform Suite analysis to increase the sensitivity and accuracy of the analysis. Proteoform Suite is open source and freely available at https://github.com/smith-chem-wisc/proteoform-suite .


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Humanos , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Proteómica/métodos , Programas Informáticos
10.
Genome Biol ; 23(1): 69, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241129

RESUMEN

BACKGROUND: The detection of physiologically relevant protein isoforms encoded by the human genome is critical to biomedicine. Mass spectrometry (MS)-based proteomics is the preeminent method for protein detection, but isoform-resolved proteomic analysis relies on accurate reference databases that match the sample; neither a subset nor a superset database is ideal. Long-read RNA sequencing (e.g., PacBio or Oxford Nanopore) provides full-length transcripts which can be used to predict full-length protein isoforms. RESULTS: We describe here a long-read proteogenomics approach for integrating sample-matched long-read RNA-seq and MS-based proteomics data to enhance isoform characterization. We introduce a classification scheme for protein isoforms, discover novel protein isoforms, and present the first protein inference algorithm for the direct incorporation of long-read transcriptome data to enable detection of protein isoforms previously intractable to MS-based detection. We have released an open-source Nextflow pipeline that integrates long-read sequencing in a proteomic workflow for isoform-resolved analysis. CONCLUSIONS: Our work suggests that the incorporation of long-read sequencing and proteomic data can facilitate improved characterization of human protein isoform diversity. Our first-generation pipeline provides a strong foundation for future development of long-read proteogenomics and its adoption for both basic and translational research.


Asunto(s)
Proteogenómica , Empalme Alternativo , Humanos , Isoformas de Proteínas/genética , Proteómica , Análisis de Secuencia de ARN/métodos , Transcriptoma
11.
J Proteome Res ; 21(4): 993-1001, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35192358

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) remains a deadly infectious disease despite existing antiretroviral therapies. A comprehensive understanding of the specific mechanisms of viral infectivity remains elusive and currently limits the development of new and effective therapies. Through in-depth proteomic analysis of HIV-1 virions, we discovered the novel post-translational modification of highly conserved residues within the viral matrix and capsid proteins to the dehydroamino acids, dehydroalanine and dehydrobutyrine. We further confirmed their presence by labeling the reactive alkene, characteristic of dehydroamino acids, with glutathione via Michael addition. Dehydroamino acids are rare, understudied, and have been observed mainly in select bacterial and fungal species. Until now, they have not been observed in HIV proteins. We hypothesize that these residues are important in viral particle maturation and could provide valuable insight into HIV infectivity mechanisms.


Asunto(s)
VIH-1 , Cápside/química , Cápside/metabolismo , Proteínas de la Cápside/análisis , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , VIH-1/genética , Humanos , Proteómica , Virión
12.
J Proteome Res ; 21(2): 410-419, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35073098

RESUMEN

Interpreting proteomics data remains challenging due to the large number of proteins that are quantified by modern mass spectrometry methods. Weighted gene correlation network analysis (WGCNA) can identify groups of biologically related proteins using only protein intensity values by constructing protein correlation networks. However, WGCNA is not widespread in proteomic analyses due to challenges in implementing workflows. To facilitate the adoption of WGCNA by the proteomics field, we created MetaNetwork, an open-source, R-based application to perform sophisticated WGCNA workflows with no coding skill requirements for the end user. We demonstrate MetaNetwork's utility by employing it to identify groups of proteins associated with prostate cancer from a proteomic analysis of tumor and adjacent normal tissue samples. We found a decrease in cytoskeleton-related protein expression, a known hallmark of prostate tumors. We further identified changes in module eigenproteins indicative of dysregulation in protein translation and trafficking pathways. These results demonstrate the value of using MetaNetwork to improve the biological interpretation of quantitative proteomics experiments with 15 or more samples.


Asunto(s)
Proteínas , Proteómica , Análisis por Conglomerados , Humanos , Masculino , Espectrometría de Masas , Flujo de Trabajo
13.
iScience ; 24(10): 103099, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34622154

RESUMEN

Pancreatic islets are essential for maintaining physiological blood glucose levels, and declining islet function is a hallmark of type 2 diabetes. We employ mass spectrometry-based proteomics to systematically analyze islets from 9 genetic or diet-induced mouse models representing a broad cross-section of metabolic health. Quantifying the islet proteome to a depth of >11,500 proteins, this study represents the most detailed analysis of mouse islet proteins to date. Our data highlight that the majority of islet proteins are expressed in all strains and diets, but more than half of the proteins vary in expression levels, principally due to genetics. Associating these varied protein expression levels on an individual animal basis with individual phenotypic measures reveals islet mitochondrial function as a major positive indicator of metabolic health regardless of strain. This compendium of strain-specific and dietary changes to mouse islet proteomes represents a comprehensive resource for basic and translational islet cell biology.

14.
Anal Chem ; 93(26): 9119-9128, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34165955

RESUMEN

Proton-transfer reactions (PTRs) have emerged as a powerful tool for the study of intact proteins. When coupled with m/z-selective kinetic excitation, such as parallel ion parking (PIP), one can exert exquisite control over rates of reaction with a high degree of specificity. This allows one to "concentrate", in the gas phase, nearly all the signals from an intact protein charge state envelope into a single charge state, improving the signal-to-noise ratio (S/N) by 10× or more. While this approach has been previously reported, here we show that implementing these technologies on a 21 T FT-ICR MS provides a tremendous advantage for intact protein analysis. Advanced strategies for performing PTR with PIP were developed to complement this unique instrument, including subjecting all analyte ions entering the mass spectrometer to PTR and PIP. This experiment, which we call "PTR-MS1-PIP", generates a pseudo-MS1 spectrum derived from ions that are exposed to the PTR reagent and PIP waveforms but have not undergone any prior true mass filtering or ion isolation. The result is an extremely rapid and significant improvement in the spectral S/N of intact proteins. This permits the observation of many more proteoforms and reduces ion injection periods for subsequent tandem mass spectrometry characterization. Additionally, the product ion parking waveform has been optimized to enhance the PTR rate without compromise to the parking efficiency. We demonstrate that this process, called "rapid park", can improve reaction rates by 5-10× and explore critical factors discovered to influence this process. Finally, we demonstrate how coupling PTR-MS1 and rapid park provides a 10-fold reduction in ion injection time, improving the rate of tandem MS sequencing.


Asunto(s)
Proteínas , Protones , Indicadores y Reactivos , Iones , Espectrometría de Masas en Tándem
15.
J Am Soc Mass Spectrom ; 32(6): 1319-1325, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-33754701

RESUMEN

Top-down proteomics is a key mass spectrometry-based technology for comprehensive analysis of proteoforms. Proteoforms exhibit multiple high charge states and isotopic forms in full MS scans. The dissociation behavior of proteoforms in different charge states and subjected to different collision energies is highly variable. The current widely employed data-dependent acquisition (DDA) method selects a narrow m/z range (corresponding to a single proteoform charge state) for dissociation from the most abundant precursors. We describe here Mesh, a novel dissociation strategy, to dissociate multiple charge states of one proteoform with multiple collision energies. We show that the Mesh strategy has the potential to generate fragment ions with improved sequence coverage and improve identification ratios in top-down proteomic analyses of complex samples. The strategy is implemented within an open-source instrument control software program named MetaDrive to perform real time deconvolution and precursor selection.


Asunto(s)
Espectrometría de Masas/métodos , Proteínas/química , Proteómica/métodos , Proteínas de Saccharomyces cerevisiae/análisis , Programas Informáticos , Proteínas/análisis , Proteínas de Saccharomyces cerevisiae/química
16.
J Proteome Res ; 20(4): 1997-2004, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33683901

RESUMEN

MetaMorpheus is a free, open-source software program for the identification of peptides and proteoforms from data-dependent acquisition tandem MS experiments. There is inherent uncertainty in these assignments for several reasons, including the limited overlap between experimental and theoretical peaks, the m/z uncertainty, and noise peaks or peaks from coisolated peptides that produce false matches. False discovery rates provide only a set-wise approximation for incorrect spectrum matches. Here we implemented a binary decision tree calculation within MetaMorpheus to compute a posterior error probability, which provides a measure of uncertainty for each peptide-spectrum match. We demonstrate its utility for increasing identifications and resolving ambiguities in bottom-up, top-down, proteogenomic, and nonspecific digestion searches.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Algoritmos , Bases de Datos de Proteínas , Péptidos , Probabilidad , Programas Informáticos
17.
J Proteome Res ; 20(1): 317-325, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33074679

RESUMEN

Identification of proteoforms, the different forms of a protein, is important to understand biological processes. A proteoform family is the set of different proteoforms from the same gene. We previously developed the software program Proteoform Suite, which constructs proteoform families and identifies proteoforms by intact-mass analysis. Here, we have applied this approach to top-down proteomic data acquired at the National High Magnetic Field Laboratory 21 tesla Fourier transform ion cyclotron resonance mass spectrometer (data available on the MassIVE platform with identifier MSV000085978). We explored the ability to construct proteoform families and identify proteoforms from the high mass accuracy data that this instrument provides for a complex cell lysate sample from the MCF-7 human breast cancer cell line. There were 2830 observed experimental proteforms, of which 932 were identified, 44 were ambiguous, and 1854 were unidentified. Of the 932 unique identified proteoforms, 766 were identified by top-down MS2 analysis at 1% false discovery rate (FDR) using TDPortal, and 166 were additional intact-mass identifications (∼4.7% calculated global FDR) made using Proteoform Suite. We recently published a proteoform level schema to represent ambiguity in proteoform identifications. We implemented this proteoform level classification in Proteoform Suite for intact-mass identifications, which enables users to determine the ambiguity levels and sources of ambiguity for each intact-mass proteoform identification.


Asunto(s)
Ciclotrones , Proteómica , Análisis de Fourier , Humanos , Espectrometría de Masas , Programas Informáticos
18.
J Proteome Res ; 20(4): 1826-1834, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32967423

RESUMEN

Proteoforms are the workhorses of the cell, and subtle differences between their amino acid sequences or post-translational modifications (PTMs) can change their biological function. To most effectively identify and quantify proteoforms in genetically diverse samples by mass spectrometry (MS), it is advantageous to search the MS data against a sample-specific protein database that is tailored to the sample being analyzed, in that it contains the correct amino acid sequences and relevant PTMs for that sample. To this end, we have developed Spritz (https://smith-chem-wisc.github.io/Spritz/), an open-source software tool for generating protein databases annotated with sequence variations and PTMs. We provide a simple graphical user interface for Windows and scripts that can be run on any operating system. Spritz automatically sets up and executes approximately 20 tools, which enable the construction of a proteogenomic database from only raw RNA sequencing data. Sequence variations that are discovered in RNA sequencing data upon comparison to the Ensembl reference genome are annotated on proteins in these databases, and PTM annotations are transferred from UniProt. Modifications can also be discovered and added to the database using bottom-up mass spectrometry data and global PTM discovery in MetaMorpheus. We demonstrate that such sample-specific databases allow the identification of variant peptides, modified variant peptides, and variant proteoforms by searching bottom-up and top-down proteomic data from the Jurkat human T lymphocyte cell line and demonstrate the identification of phosphorylated variant sites with phosphoproteomic data from the U2OS human osteosarcoma cell line.


Asunto(s)
Proteogenómica , Bases de Datos de Proteínas , Humanos , Espectrometría de Masas , Procesamiento Proteico-Postraduccional , Proteómica , Programas Informáticos
19.
Nat Methods ; 17(11): 1133-1138, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33106676

RESUMEN

We report O-Pair Search, an approach to identify O-glycopeptides and localize O-glycosites. Using paired collision- and electron-based dissociation spectra, O-Pair Search identifies O-glycopeptides via an ion-indexed open modification search and localizes O-glycosites using graph theory and probability-based localization. O-Pair Search reduces search times more than 2,000-fold compared to current O-glycopeptide processing software, while defining O-glycosite localization confidence levels and generating more O-glycopeptide identifications. Beyond the mucin-type O-glycopeptides discussed here, O-Pair Search also accepts user-defined glycan databases, making it compatible with many types of O-glycosylation. O-Pair Search is freely available within the open-source MetaMorpheus platform at https://github.com/smith-chem-wisc/MetaMorpheus .


Asunto(s)
Glicopéptidos , Proteómica/métodos , Espectrometría de Masas en Tándem , Bases de Datos de Proteínas , Glicopéptidos/análisis , Glicopéptidos/química , Glicosilación , Proteómica/instrumentación , Programas Informáticos , Flujo de Trabajo
20.
J Am Soc Mass Spectrom ; 31(9): 1783-1802, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32812765

RESUMEN

The Consortium for Top-Down Proteomics (www.topdownproteomics.org) launched the present study to assess the current state of top-down mass spectrometry (TD MS) and middle-down mass spectrometry (MD MS) for characterizing monoclonal antibody (mAb) primary structures, including their modifications. To meet the needs of the rapidly growing therapeutic antibody market, it is important to develop analytical strategies to characterize the heterogeneity of a therapeutic product's primary structure accurately and reproducibly. The major objective of the present study is to determine whether current TD/MD MS technologies and protocols can add value to the more commonly employed bottom-up (BU) approaches with regard to confirming protein integrity, sequencing variable domains, avoiding artifacts, and revealing modifications and their locations. We also aim to gather information on the common TD/MD MS methods and practices in the field. A panel of three mAbs was selected and centrally provided to 20 laboratories worldwide for the analysis: Sigma mAb standard (SiLuLite), NIST mAb standard, and the therapeutic mAb Herceptin (trastuzumab). Various MS instrument platforms and ion dissociation techniques were employed. The present study confirms that TD/MD MS tools are available in laboratories worldwide and provide complementary information to the BU approach that can be crucial for comprehensive mAb characterization. The current limitations, as well as possible solutions to overcome them, are also outlined. A primary limitation revealed by the results of the present study is that the expert knowledge in both experiment and data analysis is indispensable to practice TD/MD MS.


Asunto(s)
Anticuerpos Monoclonales , Espectrometría de Masas/métodos , Proteómica/métodos , Animales , Anticuerpos Monoclonales/análisis , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Regiones Determinantes de Complementariedad/análisis , Regiones Determinantes de Complementariedad/química , Regiones Determinantes de Complementariedad/genética , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...