Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 14(4): 290, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37185904

RESUMEN

Invadopodia are adhesive, actin-rich protrusions formed by metastatic cancer cells that degrade the extracellular matrix and facilitate invasion. They support the metastatic cascade by a spatially and temporally coordinated process whereby invading cells bind to the matrix, degrade it by specific metalloproteinases, and mechanically penetrate diverse tissue barriers by forming actin-rich extensions. However, despite the apparent involvement of invadopodia in the metastatic process, the molecular mechanisms that regulate invadopodia formation and function are still largely unclear. In this study, we have explored the involvement of the key Hippo pathway co-regulators, namely YAP, and TAZ, in invadopodia formation and matrix degradation. Toward that goal, we tested the effect of depletion of YAP, TAZ, or both on invadopodia formation and activity in multiple human cancer cell lines. We report that the knockdown of YAP and TAZ or their inhibition by verteporfin induces a significant elevation in matrix degradation and invadopodia formation in several cancer cell lines. Conversely, overexpression of these proteins strongly suppresses invadopodia formation and matrix degradation. Proteomic and transcriptomic profiling of MDA-MB-231 cells, following co-knockdown of YAP and TAZ, revealed a significant change in the levels of key invadopodia-associated proteins, including the crucial proteins Tks5 and MT1-MMP (MMP14). Collectively, our findings show that YAP and TAZ act as negative regulators of invadopodia formation in diverse cancer lines, most likely by reducing the levels of essential invadopodia components. Dissecting the molecular mechanisms of invadopodia formation in cancer invasion may eventually reveal novel targets for therapeutic applications against invasive cancer.


Asunto(s)
Vía de Señalización Hippo , Podosomas , Humanos , Actinas/metabolismo , Línea Celular Tumoral , Podosomas/metabolismo , Proteómica , Proteínas Señalizadoras YAP
2.
Nat Commun ; 13(1): 2800, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589715

RESUMEN

The TP53 gene is mutated in approximately 60% of all colorectal cancer (CRC) cases. Over 20% of all TP53-mutated CRC tumors carry missense mutations at position R175 or R273. Here we report that CRC tumors harboring R273 mutations are more prone to progress to metastatic disease, with decreased survival, than those with R175 mutations. We identify a distinct transcriptional signature orchestrated by p53R273H, implicating activation of oncogenic signaling pathways and predicting worse outcome. These features are shared also with the hotspot mutants p53R248Q and p53R248W. p53R273H selectively promotes rapid CRC cell spreading, migration, invasion and metastasis. The transcriptional output of p53R273H is associated with preferential binding to regulatory elements of R273 signature genes. Thus, different TP53 missense mutations contribute differently to cancer progression. Elucidation of the differential impact of distinct TP53 mutations on disease features may make TP53 mutational information more actionable, holding potential for better precision-based medicine.


Asunto(s)
Neoplasias Colorrectales , Proteína p53 Supresora de Tumor , Neoplasias Colorrectales/genética , Genes p53 , Humanos , Mutación , Fenotipo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(17): e2119644119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35439056

RESUMEN

Missense mutations in the p53 tumor suppressor abound in human cancer. Common ("hotspot") mutations endow mutant p53 (mutp53) proteins with oncogenic gain of function (GOF), including enhanced cell migration and invasiveness, favoring cancer progression. GOF is usually attributed to transcriptional effects of mutp53. To elucidate transcription-independent effects of mutp53, we characterized the protein interactome of the p53R273H mutant in cells derived from pancreatic ductal adenocarcinoma (PDAC), where p53R273H is the most frequent p53 mutant. We now report that p53R273H, but not the p53R175H hotspot mutant, interacts with SQSTM1/p62 and promotes cancer cell migration and invasion in a p62-dependent manner. Mechanistically, the p53R273H-p62 axis drives the proteasomal degradation of several cell junction­associated proteins, including the gap junction protein Connexin 43, facilitating scattered cell migration. Concordantly, down-regulation of Connexin 43 augments PDAC cell migration, while its forced overexpression blunts the promigratory effect of the p53R273H-p62 axis. These findings define a mechanism of mutp53 GOF.


Asunto(s)
Movimiento Celular , Neoplasias Pancreáticas , Proteína p53 Supresora de Tumor , Adhesión Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Genes p53 , Humanos , Mutación , Neoplasias Pancreáticas/genética , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34088837

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, which is refractory to all currently available treatments and bears dismal prognosis. About 70% of all PDAC cases harbor mutations in the TP53 tumor suppressor gene. Many of those are missense mutations, resulting in abundant production of mutant p53 (mutp53) protein in the cancer cells. Analysis of human PDAC patient data from The Cancer Genome Atlas (TCGA) revealed a negative association between the presence of missense mutp53 and infiltration of CD8+ T cells into the tumor. Moreover, CD8+ T cell infiltration was negatively correlated with the expression of fibrosis-associated genes. Importantly, silencing of endogenous mutp53 in KPC cells, derived from mouse PDAC tumors driven by mutant Kras and mutp53, down-regulated fibrosis and elevated CD8+ T cell infiltration in the tumors arising upon orthotopic injection of these cells into the pancreas of syngeneic mice. Moreover, the tumors generated by mutp53-silenced KPC cells were markedly smaller than those elicited by mutp53-proficient control KPC cells. Altogether, our findings suggest that missense p53 mutations may contribute to worse PDAC prognosis by promoting a more vigorous fibrotic tumor microenvironment and impeding the ability of the immune system to eliminate the cancer cells.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Fibrosis , Mutación Missense , Neoplasias Pancreáticas/genética , Proteína p53 Supresora de Tumor/genética , Animales , Linfocitos T CD8-positivos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Microambiente Tumoral/inmunología , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias Pancreáticas
5.
Cancer Res ; 80(19): 4145-4157, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32816858

RESUMEN

Lung cancer is the leading cause of cancer-related deaths worldwide. The paralogous transcriptional cofactors Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ, also called WWTR1), the main downstream effectors of the Hippo signal transduction pathway, are emerging as pivotal determinants of malignancy in lung cancer. Traditionally, studies have tended to consider YAP and TAZ as functionally redundant transcriptional cofactors with similar biological impact. However, there is growing evidence that each of them also possesses distinct attributes. Here we sought to systematically characterize the division of labor between YAP and TAZ in non-small cell lung cancer (NSCLC), the most common histological subtype of lung cancer. Representative NSCLC cell lines as well as patient-derived data showed that the two paralogs orchestrated nonoverlapping transcriptional programs in this cancer type. YAP preferentially regulated gene sets associated with cell division and cell-cycle progression, whereas TAZ preferentially regulated genes associated with extracellular matrix organization. Depletion of YAP resulted in growth arrest, whereas its overexpression promoted cell proliferation. Likewise, depletion of TAZ compromised cell migration, whereas its overexpression enhanced migration. The differential effects of YAP and TAZ on key cellular processes were also associated with differential response to anticancer therapies. Uncovering the different activities and downstream effects of YAP and TAZ may thus facilitate better stratification of patients with lung cancer for anticancer therapies. SIGNIFICANCE: Thease findings show that oncogenic paralogs YAP and TAZ have distinct roles in NSCLC and are associated with differential response to anticancer drugs, knowledge that may assist lung cancer therapy decisions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Ciclo Celular/fisiología , Línea Celular Tumoral , Movimiento Celular , Cromatina/genética , Cromatina/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Paclitaxel/farmacología , Transactivadores/genética , Factores de Transcripción/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP
6.
Mol Oncol ; 13(6): 1335-1341, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31050214

RESUMEN

Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), the main effectors of the Hippo pathway, are emerging as important players in cancer biology and therapy response. The intracellular localization of YAP/TAZ is a key determinant in the regulation of their activity and their roles in signal transduction. This is particularly relevant for cancer: Aberrant nuclear localization of YAP and TAZ has been observed in numerous human cancers and may therefore represent an attractive target for cancer therapy. In this review, we describe the mechanisms that regulate the nucleo-cytoplasmic shuttling of YAP/TAZ and their implications for cancer, and discuss how the new insights about this process may pave the way for novel therapeutic strategies.


Asunto(s)
Neoplasias/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Humanos , Neoplasias/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transducción de Señal , Factores de Transcripción/genética
7.
Cell Death Dis ; 9(10): 985, 2018 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-30250159

RESUMEN

The tumor suppressor Hippo pathway negatively regulates the transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) to inhibit cell growth and control organ size, whereas activation of YAP and TAZ is implicated in tumorigenesis and cancer metastasis. Here, we report that the nonreceptor tyrosine kinase PYK2 positively regulates TAZ and YAP transcriptional activity in triple-negative breast cancer (TNBC). We found that inhibition of PYK2 expression or its kinase activity substantially affects the steady-state level of TAZ and markedly facilitates its proteasomal degradation. This effect was specific to PYK2 inhibition and was not obtained by inhibition of FAK. Destabilization of TAZ was associated with profound effect of PYK2 inhibition on cell growth at low-density concomitant with reduced expression of TAZ-target genes and induction of cell apoptosis. We further show that PYK2 enhances the tyrosine phosphorylation of both TAZ and LATS1/2 and concomitantly TAZ stability, and that PYK2 protein level correlates with the level of TAZ protein in primary breast tumors. Together these observations suggest that PYK2 is an important regulator of the Hippo pathway, and its tyrosine kinase activity has a striking effect on TAZ stabilization and activation in TNBC.


Asunto(s)
Quinasa 2 de Adhesión Focal/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Línea Celular Tumoral , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Quinasa 2 de Adhesión Focal/antagonistas & inhibidores , Quinasa 2 de Adhesión Focal/genética , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Células HEK293 , Humanos , Cloruro de Litio/farmacología , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteolisis , Quinolonas/farmacología , Sulfonas/farmacología , Transactivadores , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Transfección , Neoplasias de la Mama Triple Negativas/patología , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...