Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Carcinogenesis ; 43(12): 1137-1148, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36355620

RESUMEN

Malignant mesothelioma (MM) is an incurable cancer of the serosal lining that is often caused by exposure to asbestos. Therefore, novel agents for the prevention and treatment of this disease are urgently needed. Asbestos induces the release of pro-inflammatory cytokines such as IL-1ß and IL-6, which play a role in MM development. IL-6 is a component of the JAK-STAT3 pathway that contributes to inflammation-associated tumorigenesis. Glycoprotein 130 (gp130), the signal transducer of this signaling axis, is an attractive drug target because of its role in promoting neoplasia via the activation of downstream STAT3 signaling. The anticancer drug, SC144, inhibits the interaction of gp130 with the IL-6 receptor (IL6R), effectively blunting signaling from this inflammatory axis. To test whether the inflammation-related release of IL-6 plays a role in the formation of MM, we evaluated the ability of SC144 to inhibit asbestos-induced carcinogenesis in a mouse model. The ability of sulindac and anakinra, an IL6R antagonist/positive control, to inhibit MM formation in this model was tested in parallel. Asbestos-exposed Nf2+/-;Cdkn2a+/- mice treated with SC144, sulindac or anakinra showed significantly prolonged survival compared to asbestos-exposed vehicle-treated mice. STAT3 activity was markedly decreased in MM specimens from SC144-treated mice. Furthermore, SC144 inhibited STAT3 activation by IL-6 in cultured normal mesothelial cells, and in vitro treatment of MM cells with SC144 markedly decreased the expression of STAT3 target genes. The emerging availability of newer, more potent SC144 analogs showing improved pharmacokinetic properties holds promise for future trials, benefitting individuals at high risk of this disease.


Asunto(s)
Amianto , Mesotelioma Maligno , Mesotelioma , Ratones , Animales , Interleucina-6/genética , Sulindac , Proteína Antagonista del Receptor de Interleucina 1/efectos adversos , Receptor gp130 de Citocinas/metabolismo , Amianto/toxicidad , Carcinogénesis , Inflamación/tratamiento farmacológico , Inflamación/patología , Quimioprevención , Mesotelioma/inducido químicamente , Mesotelioma/prevención & control , Mesotelioma/genética
2.
Mol Cancer Res ; 20(5): 699-711, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35082167

RESUMEN

Because loss of the NF2 tumor suppressor gene results in p21-activated kinase (Pak) activation, PAK inhibitors hold promise for the treatment of NF2-deficient tumors. To test this possibility, we asked if loss of Pak2, a highly expressed group I PAK member, affects the development of malignant mesothelioma in Nf2;Cdkn2a-deficient (NC) mice and the growth properties of NC mesothelioma cells in culture. In vivo, deletion of Pak2 resulted in a markedly decreased incidence and delayed onset of both pleural and peritoneal malignant mesotheliomas in NC mice. In vitro, Pak2 deletion decreased malignant mesothelioma cell viability, migration, clonogenicity, and spheroid formation. RNA-sequencing analysis demonstrated downregulated expression of Hedgehog and Wnt pathway genes in NC;Pak2-/- mesothelioma cells versus NC;Pak2+/+ mesothelioma cells. Targeting of the Hedgehog signaling component Gli1 or its target gene Myc inhibited cell viability and spheroid formation in NC;P+/+ mesothelioma cells. Kinome profiling uncovered kinase changes indicative of EMT in NC;Pak2-/- mesothelioma cells, suggesting that Pak2-deficient malignant mesotheliomas can adapt by reprogramming their kinome in the absence of Pak activity. The identification of such compensatory pathways offers opportunities for rational combination therapies to circumvent resistance to anti-PAK drugs. IMPLICATIONS: We provide evidence supporting a role for PAK inhibitors in treating NF2-deficient tumors. NF2-deficient tumors lacking Pak2 eventually adapt by kinome reprogramming, presenting opportunities for combination therapies to bypass anti-PAK drug resistance.


Asunto(s)
Mesotelioma Maligno , Mesotelioma , Animales , Proteínas Hedgehog/genética , Humanos , Mesotelioma/tratamiento farmacológico , Mesotelioma/genética , Ratones , Vía de Señalización Wnt , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...