Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 50: 102232, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35101798

RESUMEN

Ferroptosis and necroptosis are two pro-inflammatory cell death programs contributing to major pathologies and their inhibition has gained attention to treat a wide range of disease states. Necroptosis relies on activation of RIP1 and RIP3 kinases. Ferroptosis is triggered by oxidation of polyunsaturated phosphatidylethanolamines (PUFA-PE) by complexes of 15-Lipoxygenase (15LOX) with phosphatidylethanolamine-binding protein 1 (PEBP1). The latter, also known as RAF kinase inhibitory protein, displays promiscuity towards multiple proteins. In this study we show that RIP3 K51A kinase inactive mice have increased ferroptotic burden and worse outcome after irradiation and brain trauma rescued by anti-ferroptotic compounds Liproxstatin-1 and Ferrostatin 16-86. Given structural homology between RAF and RIP3, we hypothesized that PEBP1 acts as a necroptosis-to-ferroptosis switch interacting with either RIP3 or 15LOX. Using genetic, biochemical, redox lipidomics and computational approaches, we uncovered that PEBP1 complexes with RIP3 and inhibits necroptosis. Elevated expression combined with higher affinity enables 15LOX to pilfer PEBP1 from RIP3, thereby promoting PUFA-PE oxidation and ferroptosis which sensitizes Rip3K51A/K51A kinase-deficient mice to total body irradiation and brain trauma. This newly unearthed PEBP1/15LOX-driven mechanism, along with previously established switch between necroptosis and apoptosis, can serve multiple and diverse cell death regulatory functions across various human disease states.


Asunto(s)
Apoptosis , Ferroptosis , Animales , Muerte Celular , Ratones , Necrosis , Oxidación-Reducción , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
2.
Int J Mol Sci ; 22(10)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067535

RESUMEN

We recently discovered an anti-ferroptotic mechanism inherent to M1 macrophages whereby high levels of NO● suppressed ferroptosis via inhibition of hydroperoxy-eicosatetraenoyl-phosphatidylethanolamine (HpETE-PE) production by 15-lipoxygenase (15LOX) complexed with PE-binding protein 1 (PEBP1). However, the mechanism of NO● interference with 15LOX/PEBP1 activity remained unclear. Here, we use a biochemical model of recombinant 15LOX-2 complexed with PEBP1, LC-MS redox lipidomics, and structure-based modeling and simulations to uncover the mechanism through which NO● suppresses ETE-PE oxidation. Our study reveals that O2 and NO● use the same entry pores and channels connecting to 15LOX-2 catalytic site, resulting in a competition for the catalytic site. We identified residues that direct O2 and NO● to the catalytic site, as well as those stabilizing the esterified ETE-PE phospholipid tail. The functional significance of these residues is supported by in silico saturation mutagenesis. We detected nitrosylated PE species in a biochemical system consisting of 15LOX-2/PEBP1 and NO● donor and in RAW264.7 M2 macrophages treated with ferroptosis-inducer RSL3 in the presence of NO●, in further support of the ability of NO● to diffuse to, and react at, the 15LOX-2 catalytic site. The results provide first insights into the molecular mechanism of repression of the ferroptotic Hp-ETE-PE production by NO●.


Asunto(s)
Ferroptosis/fisiología , Óxido Nítrico/metabolismo , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Araquidonato 15-Lipooxigenasa/metabolismo , Muerte Celular/fisiología , Humanos , Lipidómica , Macrófagos/metabolismo , Simulación de Dinámica Molecular , Oxidación-Reducción , Fosfatidiletanolaminas , Fosfolípidos/metabolismo
3.
Nat Chem Biol ; 17(4): 465-476, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542532

RESUMEN

Ferroptosis, triggered by discoordination of iron, thiols and lipids, leads to the accumulation of 15-hydroperoxy (Hp)-arachidonoyl-phosphatidylethanolamine (15-HpETE-PE), generated by complexes of 15-lipoxygenase (15-LOX) and a scaffold protein, phosphatidylethanolamine (PE)-binding protein (PEBP)1. As the Ca2+-independent phospholipase A2ß (iPLA2ß, PLA2G6 or PNPLA9 gene) can preferentially hydrolyze peroxidized phospholipids, it may eliminate the ferroptotic 15-HpETE-PE death signal. Here, we demonstrate that by hydrolyzing 15-HpETE-PE, iPLA2ß averts ferroptosis, whereas its genetic or pharmacological inactivation sensitizes cells to ferroptosis. Given that PLA2G6 mutations relate to neurodegeneration, we examined fibroblasts from a patient with a Parkinson's disease (PD)-associated mutation (fPDR747W) and found selectively decreased 15-HpETE-PE-hydrolyzing activity, 15-HpETE-PE accumulation and elevated sensitivity to ferroptosis. CRISPR-Cas9-engineered Pnpla9R748W/R748W mice exhibited progressive parkinsonian motor deficits and 15-HpETE-PE accumulation. Elevated 15-HpETE-PE levels were also detected in midbrains of rotenone-infused parkinsonian rats and α-synuclein-mutant SncaA53T mice, with decreased iPLA2ß expression and a PD-relevant phenotype. Thus, iPLA2ß is a new ferroptosis regulator, and its mutations may be implicated in PD pathogenesis.


Asunto(s)
Ferroptosis/fisiología , Fosfolipasas A2 Grupo VI/metabolismo , Animales , Araquidonato 15-Lipooxigenasa/metabolismo , Modelos Animales de Enfermedad , Femenino , Fosfolipasas A2 Grupo VI/fisiología , Humanos , Hierro/metabolismo , Leucotrienos/metabolismo , Metabolismo de los Lípidos/fisiología , Peróxidos Lipídicos/metabolismo , Lípidos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Enfermedad de Parkinson/metabolismo , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Fosfolipasas/metabolismo , Fosfolípidos/metabolismo , Ratas , Ratas Endogámicas Lew
4.
Redox Biol ; 38: 101744, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33126055

RESUMEN

Hydroperoxy-eicosatetraenoyl-phosphatidylethanolamine (HpETE-PE) is a ferroptotic cell death signal. HpETE-PE is produced by the 15-Lipoxygenase (15LOX)/Phosphatidylethanolamine Binding Protein-1 (PEBP1) complex or via an Fe-catalyzed non-enzymatic radical reaction. Ferrostatin-1 (Fer-1), a common ferroptosis inhibitor, is a lipophilic radical scavenger but a poor 15LOX inhibitor arguing against 15LOX having a role in ferroptosis. In the current work, we demonstrate that Fer-1 does not affect 15LOX alone, however, it effectively inhibits HpETE-PE production by the 15LOX/PEBP1 complex. Computational molecular modeling shows that Fer-1 binds to the 15LOX/PEBP1 complex at three sites and could disrupt the catalytically required allosteric motions of the 15LOX/PEBP1 complex. Using nine ferroptosis cell/tissue models, we show that HpETE-PE is produced by the 15LOX/PEBP1 complex and resolve the long-existing Fer-1 anti-ferroptotic paradox.


Asunto(s)
Ferroptosis , Muerte Celular , Ciclohexilaminas , Oxidación-Reducción , Fenilendiaminas
5.
Toxins (Basel) ; 12(7)2020 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-32605112

RESUMEN

Cardiotoxin CTII from Najaoxiana cobra venom translocates to the intermembrane space (IMS) of mitochondria to disrupt the structure and function of the inner mitochondrial membrane. At low concentrations, CTII facilitates ATP-synthase activity, presumably via the formation of non-bilayer, immobilized phospholipids that are critical in modulating ATP-synthase activity. In this study, we investigated the effects of another cardiotoxin CTI from Najaoxiana cobra venom on the structure of mitochondrial membranes and on mitochondrial-derived ATP synthesis. By employing robust biophysical methods including 31P-NMR and 1H-NMR spectroscopy, we analyzed the effects of CTI and CTII on phospholipid packing and dynamics in model phosphatidylcholine (PC) membranes enriched with 2.5 and 5.0 mol% of cardiolipin (CL), a phospholipid composition that mimics that in the outer mitochondrial membrane (OMM). These experiments revealed that CTII converted a higher percentage of bilayer phospholipids to a non-bilayer and immobilized state and both cardiotoxins utilized CL and PC molecules to form non-bilayer structures. Furthermore, in order to gain further understanding on how cardiotoxins bind to mitochondrial membranes, we employed molecular dynamics (MD) and molecular docking simulations to investigate the molecular mechanisms by which CTII and CTI interactively bind with an in silico phospholipid membrane that models the composition similar to the OMM. In brief, MD studies suggest that CTII utilized the N-terminal region to embed the phospholipid bilayer more avidly in a horizontal orientation with respect to the lipid bilayer and thereby penetrate at a faster rate compared with CTI. Molecular dynamics along with the Autodock studies identified critical amino acid residues on the molecular surfaces of CTII and CTI that facilitated the long-range and short-range interactions of cardiotoxins with CL and PC. Based on our compiled data and our published findings, we provide a conceptual model that explains a molecular mechanism by which snake venom cardiotoxins, including CTI and CTII, interact with mitochondrial membranes to alter the mitochondrial membrane structure to either upregulate ATP-synthase activity or disrupt mitochondrial function.


Asunto(s)
Proteínas Cardiotóxicas de Elápidos/metabolismo , Venenos Elapídicos/toxicidad , Mitocondrias Cardíacas/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Naja naja , Fosfolípidos/metabolismo , Animales , Sitios de Unión , Bovinos , Proteínas Cardiotóxicas de Elápidos/toxicidad , Venenos Elapídicos/metabolismo , Membranas Artificiales , Mitocondrias Cardíacas/enzimología , Membranas Mitocondriales/enzimología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Factores de Tiempo
6.
Proc Natl Acad Sci U S A ; 117(25): 14376-14385, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513718

RESUMEN

Temporally harmonized elimination of damaged or unnecessary organelles and cells is a prerequisite of health. Under Type 2 inflammatory conditions, human airway epithelial cells (HAECs) generate proferroptotic hydroperoxy-arachidonoyl-phosphatidylethanolamines (HpETE-PEs) as proximate death signals. Production of 15-HpETE-PE depends on activation of 15-lipoxygenase-1 (15LO1) in complex with PE-binding protein-1 (PEBP1). We hypothesized that cellular membrane damage induced by these proferroptotic phospholipids triggers compensatory prosurvival pathways, and in particular autophagic pathways, to prevent cell elimination through programmed death. We discovered that PEBP1 is pivotal to driving dynamic interactions with both proferroptotic 15LO1 and the autophagic protein microtubule-associated light chain-3 (LC3). Further, the 15LO1-PEBP1-generated ferroptotic phospholipid, 15-HpETE-PE, promoted LC3-I lipidation to stimulate autophagy. This concurrent activation of autophagy protects cells from ferroptotic death and release of mitochondrial DNA. Similar findings are observed in Type 2 Hi asthma, where high levels of both 15LO1-PEBP1 and LC3-II are seen in HAECs, in association with low bronchoalveolar lavage fluid mitochondrial DNA and more severe disease. The concomitant activation of ferroptosis and autophagy by 15LO1-PEBP1 complexes and their hydroperoxy-phospholipids reveals a pathobiologic pathway relevant to asthma and amenable to therapeutic targeting.


Asunto(s)
Araquidonato 15-Lipooxigenasa/metabolismo , Asma/inmunología , Autofagia/inmunología , Células Epiteliales/patología , Ferroptosis/inmunología , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Adulto , Animales , Asma/diagnóstico , Asma/patología , Líquido del Lavado Bronquioalveolar/citología , Línea Celular , Supervivencia Celular/inmunología , Células Epiteliales/inmunología , Femenino , Técnicas de Inactivación de Genes , Humanos , Ácidos Hidroxieicosatetraenoicos/inmunología , Ácidos Hidroxieicosatetraenoicos/metabolismo , Interleucina-13/inmunología , Interleucina-13/metabolismo , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Simulación de Dinámica Molecular , Proteínas de Unión a Fosfatidiletanolamina/genética , Fosfatidiletanolaminas/inmunología , Fosfatidiletanolaminas/metabolismo , Cultivo Primario de Células , Unión Proteica/inmunología , Índice de Severidad de la Enfermedad
7.
Nat Chem Biol ; 16(3): 278-290, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32080625

RESUMEN

Ferroptotic death is the penalty for losing control over three processes-iron metabolism, lipid peroxidation and thiol regulation-that are common in the pro-inflammatory environment where professional phagocytes fulfill their functions and yet survive. We hypothesized that redox reprogramming of 15-lipoxygenase (15-LOX) during the generation of pro-ferroptotic signal 15-hydroperoxy-eicosa-tetra-enoyl-phosphatidylethanolamine (15-HpETE-PE) modulates ferroptotic endurance. Here, we have discovered that inducible nitric oxide synthase (iNOS)/NO•-enrichment of activated M1 (but not alternatively activated M2) macrophages/microglia modulates susceptibility to ferroptosis. Genetic or pharmacologic depletion/inactivation of iNOS confers sensitivity on M1 cells, whereas NO• donors empower resistance of M2 cells to ferroptosis. In vivo, M1 phagocytes, in comparison to M2 phagocytes, exert higher resistance to pharmacologically induced ferroptosis. This resistance is diminished in iNOS-deficient cells in the pro-inflammatory conditions of brain trauma or the tumour microenvironment. The nitroxygenation of eicosatetraenoyl (ETE)-PE intermediates and oxidatively truncated species by NO• donors and/or suppression of NO• production by iNOS inhibitors represent a novel redox mechanism of regulation of ferroptosis in pro-inflammatory conditions.


Asunto(s)
Ferroptosis/fisiología , Macrófagos/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Animales , Araquidonato 15-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/fisiología , Muerte Celular , Femenino , Hierro/metabolismo , Hierro/fisiología , Leucotrienos/metabolismo , Peroxidación de Lípido/fisiología , Peróxidos Lipídicos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Óxido Nítrico Sintasa de Tipo II/fisiología , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
8.
Front Endocrinol (Lausanne) ; 11: 628079, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33679610

RESUMEN

A huge diversification of phospholipids, forming the aqueous interfaces of all biomembranes, cannot be accommodated within a simple concept of their role as membrane building blocks. Indeed, a number of signaling functions of (phospho)lipid molecules has been discovered. Among these signaling lipids, a particular group of oxygenated polyunsaturated fatty acids (PUFA), so called lipid mediators, has been thoroughly investigated over several decades. This group includes oxygenated octadecanoids, eicosanoids, and docosanoids and includes several hundreds of individual species. Oxygenation of PUFA can occur when they are esterified into major classes of phospholipids. Initially, these events have been associated with non-specific oxidative injury of biomembranes. An alternative concept is that these post-synthetically oxidatively modified phospholipids and their adducts with proteins are a part of a redox epiphospholipidome that represents a rich and versatile language for intra- and inter-cellular communications. The redox epiphospholipidome may include hundreds of thousands of individual molecular species acting as meaningful biological signals. This review describes the signaling role of oxygenated phospholipids in programs of regulated cell death. Although phospholipid peroxidation has been associated with almost all known cell death programs, we chose to discuss enzymatic pathways activated during apoptosis and ferroptosis and leading to peroxidation of two phospholipid classes, cardiolipins (CLs) and phosphatidylethanolamines (PEs). This is based on the available LC-MS identification and quantitative information on the respective peroxidation products of CLs and PEs. We focused on molecular mechanisms through which two proteins, a mitochondrial hemoprotein cytochrome c (cyt c), and non-heme Fe lipoxygenase (LOX), change their catalytic properties to fulfill new functions of generating oxygenated CL and PE species. Given the high selectivity and specificity of CL and PE peroxidation we argue that enzymatic reactions catalyzed by cyt c/CL complexes and 15-lipoxygenase/phosphatidylethanolamine binding protein 1 (15LOX/PEBP1) complexes dominate, at least during the initiation stage of peroxidation, in apoptosis and ferroptosis. We contrast cell-autonomous nature of CLox signaling in apoptosis correlating with its anti-inflammatory functions vs. non-cell-autonomous ferroptotic signaling facilitating pro-inflammatory (necro-inflammatory) responses. Finally, we propose that small molecule mechanism-based regulators of enzymatic phospholipid peroxidation may lead to highly specific anti-apoptotic and anti-ferroptotic therapeutic modalities.


Asunto(s)
Apoptosis/fisiología , Ácidos Grasos Insaturados/metabolismo , Lipidómica/métodos , Fosfolípidos/metabolismo , Transducción de Señal/fisiología , Animales , Catálisis , Muerte Celular/fisiología , Ferroptosis/fisiología , Humanos , Oxidación-Reducción
9.
Toxins (Basel) ; 11(3)2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30857180

RESUMEN

Cobra venom cardiotoxins (CVCs) can translocate to mitochondria to promote apoptosis by eliciting mitochondrial dysfunction. However, the molecular mechanism(s) by which CVCs are selectively targeted to the mitochondrion to disrupt mitochondrial function remains to be elucidated. By studying cardiotoxin from Naja mossambica mossambica cobra (cardiotoxin VII4), a basic three-fingered S-type cardiotoxin, we hypothesized that cardiotoxin VII4 binds to cardiolipin (CL) in mitochondria to alter mitochondrial structure/function and promote neurotoxicity. By performing confocal analysis, we observed that red-fluorescently tagged cardiotoxin rapidly translocates to mitochondria in mouse primary cortical neurons and in human SH-SY5Y neuroblastoma cells to promote aberrant mitochondrial fragmentation, a decline in oxidative phosphorylation, and decreased energy production. In addition, by employing electron paramagnetic resonance (EPR) and protein nuclear magnetic resonance (¹H-NMR) spectroscopy and phosphorescence quenching of erythrosine in model membranes, our compiled biophysical data show that cardiotoxin VII4 binds to anionic CL, but not to zwitterionic phosphatidylcholine (PC), to increase the permeability and formation of non-bilayer structures in CL-enriched membranes that biochemically mimic the outer and inner mitochondrial membranes. Finally, molecular dynamics simulations and in silico docking studies identified CL binding sites in cardiotoxin VII4 and revealed a molecular mechanism by which cardiotoxin VII4 interacts with CL and PC to bind and penetrate mitochondrial membranes.


Asunto(s)
Proteínas Cardiotóxicas de Elápidos/toxicidad , Membranas Mitocondriales/efectos de los fármacos , Neurotoxinas/toxicidad , Adenosina Trifosfato/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Proteínas Cardiotóxicas de Elápidos/química , Femenino , Humanos , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Modelos Moleculares , Naja , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neurotoxinas/química , Embarazo , Transporte de Proteínas
10.
Cell ; 171(3): 628-641.e26, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29053969

RESUMEN

Ferroptosis is a form of programmed cell death that is pathogenic to several acute and chronic diseases and executed via oxygenation of polyunsaturated phosphatidylethanolamines (PE) by 15-lipoxygenases (15-LO) that normally use free polyunsaturated fatty acids as substrates. Mechanisms of the altered 15-LO substrate specificity are enigmatic. We sought a common ferroptosis regulator for 15LO. We discovered that PEBP1, a scaffold protein inhibitor of protein kinase cascades, complexes with two 15LO isoforms, 15LO1 and 15LO2, and changes their substrate competence to generate hydroperoxy-PE. Inadequate reduction of hydroperoxy-PE due to insufficiency or dysfunction of a selenoperoxidase, GPX4, leads to ferroptosis. We demonstrated the importance of PEBP1-dependent regulatory mechanisms of ferroptotic death in airway epithelial cells in asthma, kidney epithelial cells in renal failure, and cortical and hippocampal neurons in brain trauma. As master regulators of ferroptotic cell death with profound implications for human disease, PEBP1/15LO complexes represent a new target for drug discovery.


Asunto(s)
Lesión Renal Aguda/patología , Asma/patología , Lesiones Traumáticas del Encéfalo/patología , Muerte Celular , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Lesión Renal Aguda/metabolismo , Animales , Apoptosis , Asma/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular , Humanos , Isoenzimas/metabolismo , Lipooxigenasa/química , Lipooxigenasa/metabolismo , Ratones , Modelos Moleculares , Oxazolidinonas/farmacología , Oxidación-Reducción , Proteínas de Unión a Fosfatidiletanolamina/química
11.
Hepatology ; 65(1): 253-268, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27774630

RESUMEN

Sterile liver inflammation, such as liver ischemia-reperfusion, hemorrhagic shock after trauma, and drug-induced liver injury, is initiated and regulated by endogenous mediators including DNA and reactive oxygen species. Here, we identify a mechanism for redox-mediated regulation of absent in melanoma 2 (AIM2) inflammasome activation in hepatocytes after redox stress in mice, which occurs through interaction with cytosolic high mobility group box 1 (HMGB1). We show that in liver during hemorrhagic shock in mice and in hepatocytes after hypoxia with reoxygenation, cytosolic HMGB1 associates with AIM2 and is required for activation of caspase-1 in response to cytosolic DNA. Activation of caspase-1 through AIM2 leads to subsequent hepatoprotective responses such as autophagy. HMGB1 binds to AIM2 at a non-DNA-binding site on the hematopoietic interferon-inducible nuclear antigen domain of AIM2 to facilitate inflammasome and caspase-1 activation in hepatocytes. Furthermore, binding of HMGB1 to AIM2 is stronger with fully reduced all-thiol HMGB1 than with partially oxidized disulfide-HMGB1, and binding strength corresponds to caspase-1 activation. These data suggest that HMGB1 redox status regulates AIM2 inflammasome activation. CONCLUSION: These findings suggest a novel and important mechanism for regulation of AIM2 inflammasome activation in hepatocytes during redox stress and may suggest broader implications for how this and other inflammasomes are activated and how their activation is regulated during cell stress, as well as the mechanisms of inflammasome regulation in nonimmune cell types. (Hepatology 2017;65:253-268).


Asunto(s)
Proteínas de Unión al ADN/fisiología , Hepatocitos/metabolismo , Inflamasomas/metabolismo , Hepatopatías/etiología , Animales , Caspasa 1/metabolismo , Proteína HMGB1/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción
12.
PLoS One ; 10(6): e0129248, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26091109

RESUMEN

Cobra venom cytotoxins are basic three-fingered, amphipathic, non-enzymatic proteins that constitute a major fraction of cobra venom. While cytotoxins cause mitochondrial dysfunction in different cell types, the mechanisms by which cytotoxins bind to mitochondria remain unknown. We analyzed the abilities of CTI and CTII, S-type and P-type cytotoxins from Naja naja oxiana respectively, to associate with isolated mitochondrial fractions or with model membranes that simulate the mitochondrial lipid environment by using a myriad of biophysical techniques. Phosphorus-31 nuclear magnetic resonance (31P-NMR) spectroscopy data suggest that both cytotoxins bind to isolated mitochondrial fractions and promote the formation of aberrant non-bilayer structures. We then hypothesized that CTI and CTII bind to cardiolipin (CL) to disrupt mitochondrial membranes. Collectively, 31P-NMR, electron paramagnetic resonance (EPR), proton NMR (1H-NMR), deuterium NMR (2H-NMR) spectroscopy, differential scanning calorimetry, and erythrosine phosphorescence assays suggest that CTI and CTII bind to CL to generate non-bilayer structures and promote the permeabilization, dehydration and fusion of large unilamellar phosphatidylcholine (PC) liposomes enriched with CL. On the other hand, CTII but not CTI caused biophysical alterations of large unilamellar PC liposomes enriched with phosphatidylserine (PS). Mechanistically, single molecule docking simulations identified putative CL, PS and PC binding sites in CTI and CTII. While the predicted binding sites for PS and PC share a high number of interactive amino acid residues in CTI and CTII, the CL biding sites in CTII and CTI are more divergent as it contains additional interactive amino acid residues. Overall, our data suggest that cytotoxins physically associate with mitochondrial membranes by binding to CL to disrupt mitochondrial structural integrity.


Asunto(s)
Citotoxinas/química , Citotoxinas/toxicidad , Venenos Elapídicos/química , Membranas Mitocondriales/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Cardiolipinas/química , Cardiolipinas/metabolismo , Citotoxinas/metabolismo , Membrana Dobles de Lípidos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Alineación de Secuencia , Liposomas Unilamelares
13.
Nat Cell Biol ; 15(10): 1197-1205, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24036476

RESUMEN

Recognition of injured mitochondria for degradation by macroautophagy is essential for cellular health, but the mechanisms remain poorly understood. Cardiolipin is an inner mitochondrial membrane phospholipid. We found that rotenone, staurosporine, 6-hydroxydopamine and other pro-mitophagy stimuli caused externalization of cardiolipin to the mitochondrial surface in primary cortical neurons and SH-SY5Y cells. RNAi knockdown of cardiolipin synthase or of phospholipid scramblase-3, which transports cardiolipin to the outer mitochondrial membrane, decreased the delivery of mitochondria to autophagosomes. Furthermore, we found that the autophagy protein microtubule-associated-protein-1 light chain 3 (LC3), which mediates both autophagosome formation and cargo recognition, contains cardiolipin-binding sites important for the engulfment of mitochondria by the autophagic system. Mutation of LC3 residues predicted as cardiolipin-interaction sites by computational modelling inhibited its participation in mitophagy. These data indicate that redistribution of cardiolipin serves as an 'eat-me' signal for the elimination of damaged mitochondria from neuronal cells.


Asunto(s)
Cardiolipinas/metabolismo , Membranas Mitocondriales/metabolismo , Mitofagia/fisiología , Neuronas/fisiología , Transducción de Señal , Secuencia de Aminoácidos , Animales , Autofagia/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Cardiolipinas/genética , Línea Celular Tumoral , Células Cultivadas , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Mitocondrias/efectos de los fármacos , Mitofagia/efectos de los fármacos , Modelos Moleculares , Datos de Secuencia Molecular , Neuronas/efectos de los fármacos , Oxidopamina/farmacología , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley , Rotenona/farmacología , Desacopladores/farmacología
14.
Biochemistry ; 51(39): 7783-93, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22963284

RESUMEN

Binding of the viral spike drives cell entry and infection by HIV-1 to the cellular CD4 and chemokine receptors with associated conformational change of the viral glycoprotein envelope, gp120. Crystal structures of the CD4-gp120-antibody ternary complex reveal a large internal gp120 cavity formed by three domains-the inner domain, outer domain, and bridging sheet domain-and are capped by CD4 residue Phe43. Several structures of gp120 envelope in complex with various antibodies indicated that the bridging sheet adopts varied conformations. Here, we examine bridging sheet dynamics using a crystal structure of gp120 bound to the F105 antibody exhibiting an open bridging sheet conformation and with an added V3 loop. The two strands of the bridging sheet ß2/ß3 and ß20/ß21 are dissociated from each other and are directed away from the inner and outer domains. Analysis of molecular dynamics (MD) trajectories indicates that the ß2/ß3 and ß20/ß21 strands rapidly rearrange to interact with the V3 loop and the inner and outer domains, respectively. Residue N425 on ß20 leads the conformational rearrangement of the ß20/ß21 strands by interacting with W112 on the inner domain and F382 on the outer domain. An accompanying shift is observed in the inner domain as helix α1 exhibits a loss in helicity and pivots away from helix α5. The two simulations provide a framework for understanding the conformational diversity of the bridging sheet and the propensity of the ß20/ß21 strand to refold between the inner and outer domains of gp120, in the absence of a bound ligand.


Asunto(s)
Complejo Antígeno-Anticuerpo/análisis , Proteína gp120 de Envoltorio del VIH/química , Infecciones por VIH/virología , VIH-1/química , Simulación de Dinámica Molecular , Complejo Antígeno-Anticuerpo/inmunología , Antígenos CD4/inmunología , Cristalografía por Rayos X , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Humanos , Ligandos , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
15.
Structure ; 20(11): 1838-49, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-22959625

RESUMEN

Ionotropic glutamate receptors (iGluRs) harbor two extracellular domains: the membrane-proximal ligand-binding domain (LBD) and the distal N-terminal domain (NTD). These are involved in signal sensing: the LBD binds L-glutamate, which activates the receptor channel. Ligand binding to the NTD modulates channel function in the NMDA receptor subfamily of iGluRs, which has not been observed for the AMPAR subfamily to date. Structural data suggest that AMPAR NTDs are packed into tight dimers and have lost their signaling potential. Here, we assess NTD dynamics from both subfamilies, using a variety of computational tools. We describe the conformational motions that underly NMDAR NTD allosteric signaling. Unexpectedly, AMPAR NTDs are capable of undergoing similar dynamics; although dimerization imposes restrictions, the two subfamilies sample similar, interconvertible conformational subspaces. Finally, we solve the crystal structure of AMPAR GluA4 NTD, and combined with molecular dynamics simulations, we characterize regions pivotal for an as-yet-unexplored dynamic spectrum of AMPAR NTDs.


Asunto(s)
Receptores AMPA/química , Receptores de N-Metil-D-Aspartato/química , Regulación Alostérica , Dimerización , Ligandos , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica
16.
Proc Natl Acad Sci U S A ; 108(37): 15141-6, 2011 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-21876140

RESUMEN

Glutamate transporters clear synaptically released glutamate to maintain precise communication between neurons and limit glutamate neurotoxicity. Although much progress has been made on the topology, structure, and function of these carriers, few studies have addressed large-scale structural motions collectively associated with substrate transport. Here we show that a series of single cysteine substitutions in the helical hairpin HP2 of excitatory amino acid transporter 1 form intersubunit disulfide cross-links within the trimer. After cross-linking, substrate uptake, but not substrate-activated anion conductance, is completely inhibited in these mutants. These disulfide bridges link residue pairs > 40 Å apart in the outward-facing crystal structure, and can be explained by concerted subunit movements predicted by the anisotropic network model (ANM). The existence of these global motions is further supported by the observation that single cysteine substitutions at the extracellular part of the transmembrane domain 8 can also be cross-linked by copper phenanthroline as predicted by the ANM. Interestingly, the transport domain in the un-cross-linked subunit of the trimer assumes an inward-facing orientation, suggesting that individual subunits potentially undergo separate transitions between outward- and inward-facing forms, rather than an all-or-none transition of the three subunits, a mechanism also supported by ANM-predicted intrinsic dynamics. These results shed light on how large collective motions contribute to the functional dynamics of glutamate transporters.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/química , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Transportador 1 de Aminoácidos Excitadores/química , Transportador 1 de Aminoácidos Excitadores/metabolismo , Movimiento (Física) , Multimerización de Proteína , Sustitución de Aminoácidos/genética , Aniones/metabolismo , Anisotropía , Transporte Biológico , Cadmio/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Cisteína/genética , Humanos , Activación del Canal Iónico , Modelos Biológicos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fenantrolinas/metabolismo , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
17.
Mol Biosyst ; 7(3): 832-42, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21161089

RESUMEN

Glutamate transporters regulate excitatory amino acid neurotransmission across neuronal and glial cell membranes by coupling the translocation of their substrate (aspartate or glutamate) into the intracellular (IC) medium to the energetically favorable transport of sodium ions or other cations. The first crystallographically resolved structure of this family, the archaeal aspartate transporter, Glt(Ph), has served as a structural paradigm for elucidating the mechanism of substrate translocation by these transporters. Two helical hairpins, HP2 and HP1, at the core domains of the three subunits that form this membrane protein have been proposed to act as the respective extracellular and IC gates for substrate intake and release. Molecular dynamics simulations using the outward-facing structure have confirmed that the HP2 loop acts as an EC gate. The mechanism of substrate release at atomic scale, however, remained unknown due to the lack of structural data until the recent determination of the inward-facing structure of Glt(Ph). In the present study, we use this recently resolved structure to simulate the release of substrate to the cytoplasm and the roles of HP1 and HP2 in this process. The highly flexible HP2 loop is observed to serve as an activator (or initiator) prompting the release of a gatekeeper Na(+) to the cytoplasm and promoting the influx of water molecules from the cytoplasm, which effectively disrupt substrate-protein interactions and drive the dislodging of the substrate from its binding site. The completion of substrate release and exit, however, entails the opening of the highly stable HP1 loop as well. Overall, the unique conformational flexibility of the HP2 loop, the dissociation of a Na(+), the hydration of binding pocket, and final yielding of the HP1 loop 3-Ser motif emerge as the successive events controlling the release of the bound substrate to the cell interior by glutamate transporters.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/química , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Simulación de Dinámica Molecular , Cristalografía por Rayos X , Modelos Moleculares
19.
Proc Natl Acad Sci U S A ; 106(8): 2589-94, 2009 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-19202063

RESUMEN

Glutamate transporters are membrane proteins found in neurons and glial cells, which play a critical role in regulating cell signaling by clearing glutamate released from synapses. Although extensive biochemical and structural studies have shed light onto different aspects of glutamate transport, the time-resolved molecular mechanism of substrate (glutamate or aspartate) translocation, that is, the sequence of events occurring at the atomic level after substrate binding and before its release intracellularly remain to be elucidated. We identify an energetically preferred permeation pathway of approximately 23 A between the helix HP1b on the hairpin HP1 and the transmembrane helices TM7 and TM8, using the high resolution structure of the transporter from Pyrococcus horikoshii (Glt(Ph)) in steered molecular dynamics simulations. Detailed potential of mean force calculations along the putative pathway reveal 2 energy barriers encountered by the substrate (aspartate) before it reaches the exit. The first barrier is surmounted with the assistance of 2 conserved residues (S278 and N401) and a sodium ion (Na2); and the second, by the electrostatic interactions with D405 and another sodium ion (Na1). The observed critical interactions and mediating role of conserved residues in the core domain, the accompanying conformational changes (in both substrate and transporter) that relieve local strains, and the unique coupling of aspartate transport to Na(+) dislocation provide insights into methods for modulating substrate transport.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/metabolismo , Secuencia de Aminoácidos , Sistema de Transporte de Aminoácidos X-AG/química , Modelos Moleculares , Datos de Secuencia Molecular , Transporte de Proteínas , Pyrococcus horikoshii/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
20.
J Biol Chem ; 283(42): 28680-90, 2008 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-18678877

RESUMEN

Glutamate transporters, also referred to as excitatory amino acid transporters (EAATs), are membrane proteins that regulate glutamatergic signal transmission by clearing excess glutamate after its release at synapses. A structure-based understanding of their molecular mechanisms of function has been elusive until the recent determination of the x-ray structure of an archaeal transporter, Glt(Ph). Glt(Ph) exists as a trimer, with each subunit containing a core region that mediates substrate translocation. In the present study a series of molecular dynamics simulations have been conducted and analyzed in light of new experimental data on substrate binding properties of EAATs. The simulations provide for the first time a full atomic description of the time-resolved events that drive the recognition and binding of substrate. The core region of each subunit exhibits an intrinsic tendency to open the helical hairpin HP2 loop, the extracellular gate, within tens of nanoseconds exposing conserved polar residues that serve as attractors for substrate binding. The NMDGT motif on the partially unwound part of the transmembrane helix TM7 and the residues Asp-390 and Asp-394 on TM8 are also distinguished by their important role in substrate binding and close interaction with mediating water molecules and/or sodium ions. The simulations reveal a Na+ binding site comprised in part of Leu-303 on TM7 and Asp-405 on TM8 and support a role for sodium ions in stabilizing substrate-bound conformers. The functional importance of Leu-303 or its counterpart Leu-391 in human EAAT1 (hEAAT1) is confirmed by site-directed mutagenesis and Na+ dependence assays conducted with hEAAT1 mutants L391C and L391A.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Simulación por Computador , Cristalografía por Rayos X/métodos , Glutamatos/química , Ácido Glutámico/química , Humanos , Membrana Dobles de Lípidos/química , Modelos Biológicos , Modelos Moleculares , Conformación Molecular , Sodio/química , Especificidad por Sustrato , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...