RESUMEN
In order to empower a circular carbon economy for addressing global CO2 emissions, the production of carbon-neutral fuels is especially desired, since addressing the global fuel demand via this route has the potential to significantly mitigate carbon emissions. In this study, we report a multifunctional catalyst combination consisting of a potassium promoted iron catalyst (Fe-K) and platinum containing zeolite beta (Pt-beta) which produces an almost entirely paraffinic mixture (up to C10 hydrocarbons) via CO2 hydrogenation in one step. Here, the Fe catalyst is responsible for modified Fischer-Tropsch synthesis from CO2 while Pt-beta is instrumental in tuning the product distribution almost entirely towards paraffins (both linear and branched) presumably via a combination of cracking and hydrogenation. The optimal temperature of operation was estimated to be 325 °C for the production of higher paraffins (C5 -C10 ) with a selectivity of ca. 28 % at a CO2 conversion of ca. 31 %.
RESUMEN
The production of carbon-neutral fuels from CO2 presents an avenue for causing an appreciable effect in terms of volume toward the mitigation of global carbon emissions. To that end, the production of isoparaffin-rich fuels is highly desirable. Here, we demonstrate the potential of a multifunctional catalyst combination, consisting of a methanol producer (InCo) and a Zn-modified zeolite beta, which produces a mostly isoparaffinic hydrocarbon mixture from CO2 (up to â¼85% isoparaffin selectivity among hydrocarbons) at a CO2 conversion of >15%. The catalyst combination was thoroughly characterized via an extensive complement of techniques. Specifically, operando X-ray absorption spectroscopy (XAS) reveals that Zn (which plays a crucial role of providing a hydrogenating function, improving the stability of the overall catalyst combination and isomerization performance) is likely present in the form of Zn6O6 clusters within the zeolite component, in contrast to previously reported estimations.
RESUMEN
We report the synthesis of a highly active and stable metal-organic framework derived Ni-based catalyst for the photothermal reduction of CO2 to CH4 . Through the controlled pyrolysis of MOF-74 (Ni), the nature of the carbonaceous species and therefore photothermal performance can be tuned. CH4 production rates of 488â mmol g-1 h-1 under UV-visible-IR irradiation are achieved when the catalyst is prepared under optimized conditions. No particle aggregation or significant loss of activity were observed after ten consecutive reaction cycles or more than 12â hours under continuous flow configuration. Finally, as a proof-of-concept, we performed an outdoor experiment under ambient solar irradiation, demonstrating the potential of our catalyst to reduce CO2 to CH4 using only solar energy.
RESUMEN
Photo-thermal catalysis has recently emerged as a promising alternative to overcome the limitations of traditional photocatalysis. Despite its potential, most of the photo-thermal systems still lack adequate selectivity patterns and appropriate analysis of the underlying reaction pathways, thus hampering a wide implementation. Herein, a novel photocatalyst based on Pd nanoparticles (NPs) supported on barium titanate (BTO) was prepared for the selective photo-thermal reduction of CO2 and displayed catalytic rates of up to 8.2â molCO gPd -1 h-1 . The photocatalyst allowed for a tailored selectivity towards CO or CH4 as a function of the metal loading or the light intensity. Mechanistic studies indicated that both thermal and non-thermal contributions of light played a role in the overall reaction pathway, each of them being dominant upon changing reaction conditions.
RESUMEN
The combination of well-defined molecular cavities and chemical functionality makes crystalline porous solids attractive for a great number of technological applications, from catalysis to gas separation. However, in contrast to other widely applied synthetic solids such as polymers, the lack of processability of crystalline extended solids hampers their application. In this work, we demonstrate that metal-organic frameworks, a type of highly crystalline porous solid, can be made solution processable via outer surface functionalization using N-heterocyclic carbene ligands. Selective outer surface functionalization of relatively large nanoparticles (250 nm) of the well-known zeolitic imidazolate framework ZIF-67 allows for the stabilization of processable dispersions exhibiting permanent porosity. The resulting type III porous liquids can either be directly deployed as liquid adsorbents or be co-processed with state-of-the-art polymers to yield highly loaded mixed matrix membranes with excellent mechanical properties and an outstanding performance in the challenging separation of propylene from propane. We anticipate that this approach can be extended to other metal-organic frameworks and other applications.
RESUMEN
Methane dehydroaromatization (MDA) is among the most challenging processes in catalysis science owing to the inherent harsh reaction conditions and fast catalyst deactivation. To improve this process, understanding the mechanism of the initial C-C bond formation is essential. However, consensus about the actual reaction mechanism is still to be achieved. In this work, using advanced magic-angle spinning (MAS) solid-state NMR spectroscopy, we study in detail the early stages of the reaction over a well-dispersed Mo/H-ZSM-5 catalyst. Simultaneous detection of acetylene (i.e., presumably the direct C-C bond-forming product from methane), methylidene, allenes, acetal, and surface-formate species, along with the typical olefinic/aromatic species, allow us to conclude the existence of at least two independent C-H activation pathways. Moreover, this study emphasizes the significance of mobility-dependent host-guest chemistry between an inorganic zeolite and its trapped organic species during heterogeneous catalysis.
RESUMEN
Since 1887, red mud has been an unavoidable waste derived from the production of alumina in the Bayer process. Because of its high alkalinity and metal loading, red mud disposal and storage constitute a significant environmental risk. With worldwide storage capacity reaching its limits and no alternatives to the Bayer Process, the development of methods for the valorization of red mud is a must. In this study, red mud is converted into an efficient catalyst for the valorization of CO2 . By simple potassium promotion, 45 % conversion of CO2 with a light olefin (C2 -C4 ) selectivity of 36 % is achieved at 375 °C, 30â bar, and 9600â mL g-1 h-1 , matching the performance of some of the best catalysts reported to date.