Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39065126

RESUMEN

This study aims to examine the effects of the mixture of Bacillus cereus G1-11 and Exiguobacterium acetylicum G1-33, isolated from the gut of hybrid groupers (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂), on the host. The hybrid groupers were divided into a control (C, without any probiotics), B. cereus (BC, 1010 cfu/g), E. acetylicum (EA, 108 cfu/g), compound (mix, a 1:1 mixture of B. cereus and E. acetylicum), and positive reference group (P, Lactobacillus acidophilus, 5 × 108 cfu/L). Each group had four replicates, with 30 fish per replicate (53.30 ± 0.50 g), and were fed for 60 days. The results showed that adding probiotics to the feed significantly improved the weight gain, weight growth rate, specific growth rate, and digestive enzyme activities of hybrid groupers compared to the C group. The compound group was the most significant. In addition, composite probiotics added to feed significantly upregulated the expression levels of several growth-related genes in the liver and muscles. The activities of alkaline phosphatase, catalase, glutathione peroxidase, glutathione transferase, lysozyme, and total antioxidant capacity in the serum and liver were significantly influenced through mixed probiotic feeding. Moreover, the expression levels of several immune-related genes in the liver, spleen, and head kidney were significantly enhanced by adding single and mixed probiotics to feed, with the synergy of mixed probiotics being the best. An analysis of the gut microbiota showed that adding composite bacteria enhanced the richness and diversity of the gut microbiota, significantly increasing the relative abundance of potential probiotics (Cetobacterium and Microbacterium) while decreasing the presence of potential pathogens (Mycoplasma). Overall, our findings highlighted the efficacy of mixed probiotics (B. cereus and E. acetylicum) in enhancing growth performance, nutritional value of hybrid grouper feed, antioxidant capacity, immune response, and intestinal health, in finding the best combination of functional feed additives.

2.
Animals (Basel) ; 14(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38254417

RESUMEN

In order to explore the main regulatory genes and related pathways of growth traits, transcriptome sequencing was first performed on the brain, liver, and muscle tissues of 3-month-old M. armatus with different growth rates. By comparative transcriptome analysis of fast-growing and slow-growing groups of M. armatus, a total of 2887 DEGs were screened, of which 59 up-regulated genes and 105 down-regulated genes were detected in the brain, 146 up-regulated genes and 202 down-regulated genes were detected in the liver, and 529 up-regulated genes and 1846 down-regulated genes were detected in muscle, including insulin-like growth factor binding protein 1a (IGFBP1A), insulin-like growth factor binding protein 1b (IGFBP1B), myosin, light chain 1 (MYL1), and myoglobin (MB). Through Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, we identified a total of 288 significantly enriched GO entries and 68 significantly enriched KEGG pathways related to growth, such as skeletal muscle tissue development, insulin-like growth factor binding, and the mitotic cell cycle. These key genes and signaling pathways may play a key role in regulating the growth of M. armatus. Digging into the regulatory mechanisms of these key genes will provide a theoretical basis for further exploration of the molecular mechanisms related to the growth and development of M. armatus, and help to breed new varieties of M. armatus with rapid growth.

3.
Bioresour Technol ; 393: 130047, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37989421

RESUMEN

A salt-tolerant strain, Pseudomonas mendocina A4, was isolated from brackish-water ponds showing simultaneous heterotrophic nitrification-aerobic denitrification and phosphorus removal capability. The optimal conditions for nitrogen and phosphate removal of strain A4 were pH 7-8, carbon/nitrogen ratio 10, phosphorus/nitrogen ratio 0.2, temperature 30 °C, and salinity range of 0-5 % using sodium succinate as the carbon source. The nitrogen and phosphate removal efficiencies were 96-100 % and 88-96 % within 24 h, respectively. The nitrogen and phosphate removal processes were matched with the modified Gompertz model, and the underlying mechanisms were confirmed by the activities of key metabolic enzymes. Under 10 % salinity, the immobilization technology was employed to enhance the nitrogen and phosphate removal efficiencies of strain A4, achieving 87 % and 76 %, respectively. These findings highlight the potential application of strain A4 in both freshwater and marine culture wastewater treatment.


Asunto(s)
Desnitrificación , Radioisótopos de Nitrógeno , Pseudomonas mendocina , Fosfatos , Pseudomonas mendocina/metabolismo , Nitrógeno/metabolismo , Aerobiosis , Nitrificación , Fósforo , Procesos Heterotróficos , Carbono , Nitritos/química
4.
Int Heart J ; 64(6): 1018-1024, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38030288

RESUMEN

Atrial fibrillation (AF) is closely related to abnormal cerebral blood flow. Inflammation and oxidative stress have always been important factors in the pathophysiology of AF. It remains unknown whether inflammation and oxidative stress are correlated to hippocampal perfusion in patients with AF.Sixty-three patients with AF with normal hippocampal blood perfusion (NHBP) were compared to 71 patients with AF with abnormal hippocampal blood perfusion (AHBP) using a case-control study design. The serum levels of inflammation and oxidative stress were measured. The hippocampal perfusion was detected. (1) The serum levels of high-sensitivity C-reactive protein (hs-CRP), interleukin 6 (IL-6), and oxidized low-density lipoprotein (ox-LDL) were statistically higher in the AHBP group than in the NHBP group. In the AHBP subgroup analysis, the serum levels of hs-CRP and IL-6 were statistically higher in patients with persistent AF than those with paroxysmal AF. (2) The relative cerebral blood volume (rCBV), mean transit time (MTT), and the time-to-peak (TTP) were statistically higher in the AHBP group than in the NHBP group. Moreover, cerebral blood flow (rCBF) was statistically lower in the AHBP group than in the NHBP group. (3) relative cerebral blood volume (rCBV), rCBF, MTT, and TTP were passively associated with serum hs-CRP and IL-6; rCBV, rCBF, and MTT were positively associated with ox-LDL. The serum levels of hs-CRP, IL-6, and ox-LDL were associated with AHBP in patients with AF after multivariate logistic regression analysis.Oxidative stress and inflammatory biomarkers were increased in patients with AF with AHBP, in which the serum levels of hs-CRP and IL-6 in the persistent AF group were statistically higher than those in the paroxysmal AF group. The serum levels of hs-CRP, IL-6, and ox-LDL were associated with AHBP in patients with AF.


Asunto(s)
Fibrilación Atrial , Humanos , Proteína C-Reactiva/metabolismo , Interleucina-6/metabolismo , Estudios de Casos y Controles , Inflamación , Biomarcadores , Estrés Oxidativo , Perfusión
5.
Fish Shellfish Immunol ; 136: 108700, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36966895

RESUMEN

In recent years, the widespread use of antibiotics in intensive grouper mariculture has resulted in the ineffectiveness of antibiotic treatment, leading to an increasing incidence of diseases caused by bacteria, viruses, and parasites, causing serious economic losses. Hence, it is crucial to develop alternative strategies to antibiotics for healthy and sustainable development of the mariculture industry. Here, we aimed to screen host gut-derived probiotics and evaluate its effects on growth and immunity of grouper. In this study, 43 bacterial strains were isolated from the intestine of the hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂), and a potential probiotic strain G1-26, which can efficiently secrete amylase, protease, and lipase, was obtained using different screening mediums. Based on 16S rDNA sequencing, the potential probiotic strain G1-26 was identified as Vibrio fluvialis. The results of a biological characteristic evaluation showed that V. fluvialis G1-26 could grow at 25-45 °C, pH 5.5-7.5, salinity 10-40, and bile salt concentration 0-0.030%, and produce amylase, lipase, and protease under different culture conditions. Additionally, V. fluvialis G1-26 is sensitive to many antibiotics and does not exhibit aquatic biotoxicity. Subsequently, hybrid groupers were fed diets containing V. fluvialis G1-26 at different concentrations (0, 106, 108, and 1010 CFU/g) for 60 d. The results showed that V. fluvialis G1-26 at 108 CFU/g did not significantly affect the growth performance of the hybrid grouper (P > 0.05). V. fluvialis G1-26 supplementation at 108 and 1010 CFU/g significantly promoted the relative expression of immune-related genes in hybrid groupers (TLR3, TLR5, IL-1ß, IL-8, IL-10, CTL, LysC, TNF-2, and MHC-2) and improved the activities of alkaline phosphatase, acid phosphatase, total superoxide dismutase, and total protein in the liver. In conclusion, V. fluvialis G1-26, a potential probiotic strain isolated from the intestine of the hybrid grouper, can be used as an effective immunopotentiator at an optimal dose of 108 CFU/g diet. Our results provide a scientific basis for the development and utilization of probiotics in the grouper mariculture industry.


Asunto(s)
Lubina , Probióticos , Animales , Antioxidantes/metabolismo , Dieta/veterinaria , Probióticos/farmacología , Péptido Hidrolasas , Amilasas , Lipasa , Alimentación Animal/análisis
6.
Front Physiol ; 13: 1049776, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406980

RESUMEN

Hypoxia is a critical problem in intensive Epinephelus coioides aquaculture systems. In the present study, the physiological responses of E. coioides muscle to acute hypoxic stress (DO = 0.6 ± 0.1 mg/L) and reoxygenation (DO = 6.0 ± 0.1 mg/L) were analyzed by transcriptome sequencing (RNA-seq) and quantitative real-time PCR (qRT-PCR). RNA-seq was conducted on the muscle tissues of E. coioides in the hypoxia-tolerant (EMS), hypoxia-sensitive (EMW), and normoxic (CM) groups. Among the three groups, a total of 277 differentially expressed genes (DEGs) were identified. KEGG analysis revealed that the pathways significantly enriched after hypoxic stress are involved in the immune response, glycolysis/gluconeogenesis, energy metabolism, vasodilation and proliferation, cell proliferation, and apoptosis. qRT‒PCR verified that the differentially expressed genes FIH-1, PHD-2, PPARα, BCL-XL, LDH-A, and Flt-1 were significantly upregulated after hypoxic stress and returned to normal levels after reoxygenation, suggesting that these DEGs play important roles in responding to hypoxia treatment. In addition, the HIF-1 signaling pathway was also activated under hypoxic stress, and qRT‒PCR confirmed that the expression level of HIF-1α was significantly elevated under acute hypoxic stress, indicating that the HIF-1 signaling pathway is the central pathway in the E. coioides hypoxic response mechanism and activates other related pathways to adapt to hypoxic stress. These pathways jointly regulate energy metabolism, substance synthesis, blood vessel proliferation, cell proliferation, and differentiation and prolong survival time. These results provide ideas for understanding physiological regulation after hypoxic stress and reoxygenation and provide basic insights for the future breeding of hypoxia-tolerant E. coioides.

7.
Environ Pollut ; 311: 119934, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35973451

RESUMEN

Fish-related antibiotic resistance genes (ARGs) have attracted attention for their potentially harmful effects on food safety and human health through the food chain transfer. However, the potential factors affecting these ARGs have not been fully explored. In this study, ARGs and bacterial communities in the fish gut, mucosal skin, and gill filaments in fish were comprehensively evaluated in four different mariculture systems formed by hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂), Gracilaria bailinae, and Litopenaeus vannamei using different combinations. The results showed that 9 ARGs were detected in the gut and mucosal skin and 6 ARGs in the gill filaments. The detection rate of aphA1 was the highest, and the abundance was 1.91 × 10-3 - 6.30 × 10-2 copies per 16 S rRNA gene. Transposase gene (tnpA-04) was detected in all samples with the abundance of 3.57 × 10-3 - 3.59 × 10-2 copies per 16 S rRNA gene, and was strongly correlated with multiple ARGs (e.g., aphA1, tet(34), mphA-02). Proteobacteria, Deinococcus-Thermus, Firmicutes, and Bacteroidetes were the dominant phyla in the four mariculture systems, accounting for 65.1%-96.2% of the total bacterial community. Notably, the high relative abundance of Stenotrophomonas, a potential human pathogen, was elevated by 20.5% in the hybrid grouper gut in the monoculture system. In addition, variation partitioning analysis (VPA) showed that the difference in bacterial communities between mariculture systems was the main driving factor of ARGs distribution differences in hybrid groupers. This study provides a new comprehensive understanding of the characterization of fish-related ARGs contamination in different mariculture systems and facilitates the assessment of potential risks of ARGs and pathogen taxa to human health.


Asunto(s)
Antibacterianos , Genes Bacterianos , Animales , Antibacterianos/análisis , Bacterias/genética , Bacteroidetes/genética , Farmacorresistencia Microbiana/genética , Humanos
8.
Artículo en Inglés | MEDLINE | ID: mdl-35653833

RESUMEN

Hypoxia is a common stressor for aquatic animals, including Epinephelus coioides, with a considerable impact on sustainable aquaculture. E. coioides is a widely consumed fish in China owing to its high nutritious value and taste. However, water hypoxia caused by high density culture process has become a great threat to E. coioides culture, and its response to hypoxia stress has not been discussed before. Therefore, the aim of this study was to examine the response of E. coioides to acute hypoxia using transcriptomic techniques. To this end, RNA sequencing was performed on the liver tissues of fish exposed to normoxic and hypoxic conditions for 1 h. The results presented 503 differentially expressed genes (DEGs) in the liver tissue of fish exposed to hypoxic condition compared with those in the normoxic group. Enrichment analysis using the Gene Ontology database showed that the DEGs were mainly enriched for functions related to cell apoptosis signaling pathways, insulin resistance, antioxidant enzymes, and glycolysis/gluconeogenesis signaling pathways. KEGG enrichment analysis showed that HIF-1, PI3K-AKT, IL-17, NF-kappa B, and MAPK signaling pathways were significantly enriched by the DEGs. The DEGs were mainly involved in immune response, inflammatory response, cell apoptosis regulation, energy metabolism, and substance metabolism. Additionally, the hypoxia response in E. coioides was mainly regulated via the PI3K-AKT-HIF-1 signaling axis. Overall, the findings of this study contribute to the understanding of hypoxia stress response in E. coioides, and provides target genes for breeding hypoxia-tolerant Epinephelus spp.


Asunto(s)
Lubina , Transcriptoma , Animales , Lubina/genética , Perfilación de la Expresión Génica , Hipoxia/genética , Hígado , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética
9.
Bioresour Technol ; 345: 126541, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34910970

RESUMEN

Two biosafety strains, identified as Pseudomonas mendocina S16 and Enterobacter cloacae DS'5, were isolated from freshwater aquaculture ponds and showed significant heterotrophic nitrification-aerobic denitrification abilities. Within 48 h, the inorganic nitrogen removal efficiencies in the two strains were 66.59 %-97.97 % (S16) and 72.27 %-96.44 % (DS'5). The optimal conditions for organic nitrogen removal of the two strains were temperature 20-35 °C and carbon/nitrogen (C/N) ratio 10-20 while using sodium citrate as the carbon source. Sequence amplification demonstrated the presence of the denitrification genes in both the two strains, and quantitative real-time PCR results showed that the coupled expression of nap + nar would improve the nitrate removal rate in S16. The nitrogen removal efficiencies of the two strains in immobilization culture systems were 79.80 %-98.58 % (S16) and 60.80 %-98.40 % (DS'5). This study indicated the great potential application of the two strains in aquaculture tail water treatment.


Asunto(s)
Pseudomonas mendocina , Aguas Residuales , Aerobiosis , Acuicultura , Bacterias , Desnitrificación , Enterobacter cloacae/genética , Procesos Heterotróficos , Nitrificación , Nitritos , Nitrógeno , Estanques
10.
Fish Physiol Biochem ; 47(1): 69-78, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33118088

RESUMEN

Growth hormone-releasing hormone (GHRH) is a neuropeptide that controls growth hormone (GH) synthesis and release. In this study, the full-length cDNA of Mastacembelus armatus ghrh was obtained by rapid amplification of cDNA ends method. Sequence analysis showed that the cloned sequence is 1090 bp in length, containing an open reading frame (ORF) of 429 bp that encodes a precursor protein of 142 amino acids. Sequence alignment revealed that the 27-amino acid mature peptide of Ghrh in M. armatus is conserved. Real-time PCR showed that ghrh is highly expressed in the brain, with very low or no expression in other tissues. During embryonic and larval development, ghrh expression was low in embryos but increased gradually in the stages of larval development. The biological function of Ghrh peptide was further investigated in vivo. Ghrh injection could significantly upregulate the mRNA expression of growth hormone (gh) and insulin-like growth factor-1/2 (igf-1/2) in M. armatus. Our data indicate that Ghrh is able to activate the GH-IGFs axis in M. armatus.


Asunto(s)
Anguilas/genética , Proteínas de Peces/genética , Hormona Liberadora de Hormona del Crecimiento/genética , Secuencia de Aminoácidos , Animales , Clonación Molecular , ADN Complementario/genética , Filogenia
11.
J Biol Inorg Chem ; 25(8): 1065-1066, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33067672

RESUMEN

In the original article, few equations and units were published incorrectly.

12.
J Biol Inorg Chem ; 25(8): 1051-1063, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32839886

RESUMEN

Protein-bound calcium (prCa) constitutes about 40% of serum total calcium, in which albumin is the most dominant protein. Given the chemical interaction between calcium and phosphate (Pi), the increased serum Pi in chronic kidney disease may cause changes in the composition and structure of the prCa fraction. Here, we report the phosphate binding on the protein-bound calcium in uremic rat serum. Using adenine-fed rats as a uremic model, we separated the calcium and phosphate fractions in rat serum by ultrafiltration, and found that the level of protein-bound phosphate (prPi) in the uremic serum was markedly higher than in control. The elevated prPi level was comparable to the prCa level, consistent with the presence of protein-bound calcium phosphate pr(Ca)j-m(CaPi)m. We then confirmed its presence by ex vivo X-ray absorption near-edge structure spectroscopy, revealing the discrete state of the calcium phosphate clusters associated with protein. Finally, in a quantitative investigation using Ca- and Pi-boosted serum, we discovered the threshold concentration for the Pi binding on prCa, and determined the binding constant. The threshold, while preventing Pi from binding to prCa in normal condition, allows the reaction to take place in hyperphosphatemia conditions. The protein-bound calcium phosphate could act as a link between the metabolism of serum proteins and the homeostasis of phosphate and calcium, and it deserves further investigation whether the molar ratio of (prPi/prCa)⋅100% may serve as a serum index of the vascular calcification status in chronic kidney disease.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Fosfatos de Calcio/metabolismo , Uremia/metabolismo , Animales , Homeostasis , Unión Proteica , Ratas
13.
Angew Chem Int Ed Engl ; 59(49): 21976-21979, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32860730

RESUMEN

Metal-containing nanoparticles (M-NPs) in metal/nitrogen-doped carbon (M-N-C) catalysts have been considered hostile to the acidic oxygen reduction reaction (ORR). The relation between M-NPs and the active sites of metal coordinated with nitrogen (MNx ) is hard to establish in acid medium owing to the poor stability of M-NPs. Herein, we develop a strategy to successfully construct a new FeCo-N-C catalyst containing highly active M-NPs and MN4 composite sites (M/FeCo-SAs-N-C). Enhanced catalytic activity and stability of M/FeCo-SAs-N-C is shown experimentally. Calculations reveal that there is a strong interaction between M-NPs and FeN4 sites, which can favor ORR by activating the O-O bond, thus facilitating a direct 4 e- process. Those findings firstly shed light on the highly active M-NPs and FeN4 composite sites for catalyzing acid oxygen reduction reaction, and the relevant reaction mechanism is suggested.

14.
AMB Express ; 10(1): 109, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32504358

RESUMEN

Shrimp production is the second ranked of the most-traded production in these decades and the whiteleg shrimp Litopenaeus vannamei is the sixth most cultured species. Probiotics are alternative strategy for the promotion of growth and prevention of diseases in aquaculture. To confirm the effects of the probiotics on development and microbial community of L. vannamei larvae during different development stages, five kinds of probiotics (108 ~ 109 CFU/g) were added into the rearing environment of shrimp larvae, and the effects of probiotics on bacterial community and water quality, larval growth and immune index were determined from nauplius larval stage to post larval stage. Results suggested that probiotics treated groups showed larger survival rate than the control groups from Z1 stage to P5 stage. Lactobacillus could improve the larvae's survival ability, especially in the larval stages M2, M3, P1, P5 stage. It was confirmed that probiotics could promote the growth and development of shrimp larvae and prevent the incomplete molting in their growing process, particularly for EM-treated group. Results suggested that all the probiotics-treated groups had shown significant decreasing trend in the quantity of vibrios, except for the SA-treated group. And different probiotics could inhibit vibrios during different life periods. Among these probiotics, LA, EM and PB had shown the best effects, including improving survival rate of the larvae, promoting the larval metamorphosis, reducing the quantity of vibrios and NH4-N and NO2-N levels, and increasing bacterial diversity.

15.
Fish Shellfish Immunol ; 96: 245-253, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31830564

RESUMEN

RNA polymerase (RNAP) II (DNA-directed) (POLR2) genes are essential for cell viability under environmental stress and for the transfer of biological information from DNA to RNA. However, the function and characteristics of POLR2 genes in crustaceans are still unknown. In the present study, a POLR2H cDNA was isolated from Pacific white shrimp (Litopenaeus vannamei) and designated as Lv-POLR2H. The full-length Lv-POLR2H cDNA is 772 bp in length and contains a 32-bp 5'- untranslated region (UTR), a 284-bp 3'- UTR with a poly (A) sequence, and an open reading frame (ORF) of 456 bp encoding an Lv-POLR2H protein of 151 amino acids with a deduced molecular weight of 17.21 kDa. The Lv-POLR2H protein only contains one functional domain, harbors no transmembrane domains and mainly locates in the nucleus. The expression of the Lv-POLR2H mRNA was ubiquitously detected in all selected tissues, with the highest level in the gills. In situ hybridization (ISH) analysis showed that Lv-POLR2H was mainly located in the secondary gill filaments, the transcript levels of Lv-POLR2H in the gills were found to be significantly affected after challenge by pH, low salinity and high concentrations of NO2- and NH4+, indicating that Lv-POLR2H in gill tissues might play roles under various physical stresses. Specifically, under high-pH stress, knockdown of Lv-POLR2H via siRNA significantly decreased the survival rate of the shrimp, indicating its key roles in the response to high-pH stress. Our study may provide the first evidence of the role of POLR2H in shrimp responding to high-pH stress and provides new insight into molecular regulation in response to high pH in crustaceans.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Penaeidae/genética , Penaeidae/inmunología , Péptidos/genética , Péptidos/inmunología , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Secuencia de Bases , Perfilación de la Expresión Génica , Branquias/metabolismo , Concentración de Iones de Hidrógeno , Péptidos/química , Filogenia , Estrés Fisiológico
16.
Minerva Cardioangiol ; 68(1): 15-21, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31625707

RESUMEN

BACKGROUND: The aim of this study was the evaluation of the progression of atherosclerosis and the occurrence of cardiovascular events in asymptomatic patients with atherosclerotic plaques (Class IV and V) and arterial wall atherosclerotic lesions and intima-media thickening (IMT). METHODS: Progression of atherosclerotic lesions, oxidative stress and IMT were measured in a 3-year concept, pilot registry study. All subjects were followed with standard management (SM) - including diet and exercise - to control cardiovascular risk factors.The target measurements were: the rate of progression of the atherosclerotic lesions (the passage of subjects from one atherosclerotic class to the next class); the occurrence of "hard" cardiovascular events (i.e. myocardial infarction or strokes; angina was not considered a "hard" event). The study included 3 groups: 1) SM): 2) subjects using cardioaspirin (100 mg/day) and SM; 3) subjects following SM, taking cardioaspirin and supplemented with Pycnogenol® (150 mg/day)+Centellicum® (450 mg/day). RESULTS: The groups were comparable for age and baseline evaluations. 54 subjects completed the 3 year study with standard management only, 74 with aspirin and 56 with aspirin and Pycnogenol®+Centellicum®. The BMI of all subjects was <26. No side effects and no tolerability problems were observed with the supplements. Progression was defined by the passage of the atherosclerotic lesions from one class to the next more advanced class. Progression in the supplement group was observed in 5.3% of the subjects in comparison with a progression >20% in the other groups (P<0.05). In comparison with the SM group and the cardioaspirin group the rate of 'hard' cardiovascular events, requiring hospital admissions were <4% with the combined supplement in comparison with a value >12% in the other two groups (22.22% event rate in the SM group). The reduction produced by the aspirin only was significantly lower (P<0.05) in comparison with supplemented patients. Antiplatelet management appears to reduce a significant number of events (P<0.05) without a real effect on progression of atherosclerotic lesions. The additional parameters of carotid IMT and oxidative stress were also lower (P<0.05) with the supplements. CONCLUSIONS: In conclusion, this study indicates that the combined supplementation with Pycnogenol®+Centelicum® appears to control both the progression of atherosclerosis and the occurrence of cardiovascular events in this 3 year study. Larger studies, in a wider population with more complex and less standardized conditions may be needed.


Asunto(s)
Aterosclerosis/patología , Aterosclerosis/prevención & control , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/prevención & control , Centella , Flavonoides/uso terapéutico , Extractos Vegetales/uso terapéutico , Placa Aterosclerótica/patología , Placa Aterosclerótica/prevención & control , Anciano , Aspirina/uso terapéutico , Grosor Intima-Media Carotídeo , Dieta , Suplementos Dietéticos , Progresión de la Enfermedad , Combinación de Medicamentos , Ejercicio Físico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estrés Oxidativo , Proyectos Piloto , Inhibidores de Agregación Plaquetaria/uso terapéutico , Sistema de Registros
17.
BMC Genomics ; 20(1): 938, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31805873

RESUMEN

BACKGROUND: Spinibarbus hollandi is an economically important fish species in southern China. This fish is known to have nutritional and medicinal properties; however, its farming is limited by its slow growth rate. In the present study, we observed that a compensatory growth phenomenon could be induced by adequate refeeding following 7 days of fasting in S. hollandi. To understand the starvation response and compensatory growth mechanisms in this fish, the muscle transcriptomes of S. hollandi under control, fasting, and refeeding conditions were profiled using next-generation sequencing (NGS) techniques. RESULTS: More than 4.45 × 108 quality-filtered 150-base-pair Illumina reads were obtained from all nine muscle samples. De novo assemblies yielded a total of 156,735 unigenes, among which 142,918 (91.18%) could be annotated in at least one available database. After 7 days of fasting, 2422 differentially expressed genes were detected, including 1510 up-regulated genes and 912 down-regulated genes. Genes involved in fat, protein, and carbohydrate metabolism were significantly up-regulated, and genes associated with the cell cycle, DNA replication, and immune and cellular structures were inhibited during fasting. After refeeding, 84 up-regulated genes and 16 down-regulated genes were identified. Many genes encoding the components of myofibers were significantly up-regulated. Histological analysis of muscle verified the important role of muscle hypertrophy in compensatory growth. CONCLUSION: In the present work, we reported the transcriptome profiles of S. hollandi muscle under different conditions. During fasting, the genes involved in the mobilization of stored energy were up-regulated, while the genes associated with growth were down-regulated. After refeeding, muscle hypertrophy contributed to the recovery of growth. The results of this study may help to elucidate the mechanisms underlying the starvation response and compensatory growth.


Asunto(s)
Cyprinidae/crecimiento & desarrollo , Perfilación de la Expresión Génica/veterinaria , Redes Reguladoras de Genes , Músculo Esquelético/crecimiento & desarrollo , Animales , Cyprinidae/genética , Ayuno , Conducta Alimentaria , Proteínas de Peces/genética , Regulación del Desarrollo de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , Músculo Esquelético/química , Análisis de Secuencia de ARN/veterinaria
18.
J Synchrotron Radiat ; 26(Pt 5): 1835-1842, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31490178

RESUMEN

An optical design study of a bending-magnet beamline, based on multi-bend achromat storage ring lattices, at the High Energy Photon Source, to be built in Beijing, China, is described. The main purpose of the beamline design is to produce a micro-scale beam from a bending-magnet source with little flux loss through apertures. To maximize the flux of the focal spot, the synchrotron source will be 1:1 imaged to a virtual source by a toroidal mirror; a mirror pair will be used to collimate the virtual source into quasi-parallel light which will be refocused by a Kirkpatrick-Baez mirror pair. In the case presented here, a beamline for tender X-rays ranging from 2.1 keV to 7.8 keV, with a spot size of approximately 7 µm (H) × 6 µm (V) and flux up to 2 × 1012 photons s-1, can be achieved for the purpose of X-ray absorption fine-structure (XAFS)-related experiments, such as scanning micro-XAFS and full-field nano-XAFS.

19.
BMC Neurol ; 19(1): 85, 2019 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-31053106

RESUMEN

BACKGROUND: Wilson's disease (WD) is an autosomal recessive disease of impaired copper metabolism. Previous study demonstrated that WD with corpus callosum abnormalities (WD-CCA) was limited to the posterior part (splenium). This study aimed to compare clinical features between WD-CCA and WD without corpus callosum abnormalities (WD-no-CCA). METHODS: Forty-one WD patients who had markedly neurological dysfunctions were included in this study. We retrospectively reviewed clinical, biochemical characteristics and MRI findings in the 41 WD patients. All patients were assessed using the Unified Wilson's Disease Rating Scale. RESULTS: Nine patients had corpus callosum abnormalities, 4 of 9 patients had abnormal signal in the genu and splenium, 5 of 9 patients had abnormal signal only in the splenium. WD-CCA had longer course (9.9 ± 4.0 years vs. 3.4 ± 3.6 years, p<0.01), more severe neurological dysfunctions (37.6 vs. 65.9, p<0.01) and higher psychiatric symptoms scores (11.2 vs. 22.5, p<0.01) than WD-no-CCA. The MRI findings indicated that WD-CCA had higher ratio than WD-no-CCA in globus pallidus (88.9% vs. 43.8%, p = 0.024) and thalamus (100% vs. 59.4%, p = 0.038). The index of liver function and copper metabolism had no significant in WD-CCA and WD-no-CCA patients. CONCLUSION: Our findings indicate Wilson's disease can involve the posterior as well as the anterior part of CC and patients with CC involvement had more extensive brain lesions, more severe neurological dysfunctions and psychiatric symptoms.


Asunto(s)
Cuerpo Calloso/patología , Degeneración Hepatolenticular/patología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Estudios Retrospectivos
20.
PLoS One ; 14(3): e0214589, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30921420

RESUMEN

Starvation is a common stress in fish. The underlying molecular mechanisms associated with growth depression caused by feeding restriction and compensatory growth are not well understood. We investigated the effect of fasting and refeeding on the transcriptome profiles of brain in juvenile S. hollandi using RNA-seq. A total of 4.73 × 108 raw reads were obtained from nine brain samples. De novo transcriptome assembly identified 387,085 unigenes with 2.1×109 nucleotides. A total of 936 annotated unigenes showed significantly differential expression among the control, fasting, and fasting-refeeding groups. The down-regulated differentially expressed genes (DEGs) during fasting were mainly associated with cell cycle, DNA replication, and mitosis. The up-regulated DEGs were mainly related to glucose and lipid metabolism, material transportation, and transcription factors. Most decreased DEGs during fasting were restored to normal levels after refeeding. Comparing with the control group, genes associated with protein synthesis, stimulus response, and carbohydrate metabolism were significantly over-expressed and pro-opio melanocortin (POMC) was down-regulated during the refeeding period. In conclusion, fish mobilized stored energetic materials and reduced energy consumption to prolong survival during fasting. After refeeding, the down-regulation of DEGs, e.g., POMC may be associated with compensatory growth. Up-regulation of DEGs related to ribosomal protein, stimulus response, and carbohydrate metabolism may contribute to eliminate negative effect of starvation on brain. This study provided the first transcriptome data related with impact of short-time starvation and refeeding in S. hollandi brains.


Asunto(s)
Encéfalo/metabolismo , Cyprinidae/genética , Ingestión de Alimentos/genética , Ayuno , Perfilación de la Expresión Génica , Animales , Peso Corporal/genética , Cyprinidae/crecimiento & desarrollo , Inanición/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...