Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38930714

RESUMEN

The technology to jet print metal lines with precise shape fidelity on diverse substrates is gaining higher interest across multiple research fields. It finds applications in additively manufactured flexible electronics, environmentally friendly and sustainable electronics, sensor devices for medical applications, and fabricating electrodes for solar cells. This paper provides an experimental investigation to deepen insights into the non-contact printing of solder lines using StarJet technology, eliminating the need for surface activation, substrate heating, curing, or post-processing. Moreover, it employs bulk metal instead of conventional inks or pastes, leading to cost-effective production and enhanced conductivity. The effect of molten metal temperature, substrate temperature, standoff distance, and printing velocity was investigated on polymer foils (i.e., PET sheets). Robust printing parameters were derived to print uniform, bulge-free, bulk metal lines suitable for additive manufacturing applications. The applicability of the derived parameters was extended to 3D-printed PLA, TPU, PA-GF, and PETG substrates having a much higher surface roughness. Additionally, a high aspect ratio of approx. 16:1 wall structure has been demonstrated by printing multiple metal lines on top of each other. While challenges persist, this study contributes to advancing additively manufactured electronic devices, highlighting the capabilities of StarJet metal jet-printing technology.

2.
Micromachines (Basel) ; 15(6)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38930721

RESUMEN

In this article, we explore multi-material additive manufacturing (MMAM) for conductive trace printing using molten metal microdroplets on polymer substrates to enhance digital signal transmission. Investigating microdroplet spread informs design rules for adjacent trace printing. We studied the effects of print distance on trace morphology and resolution, noting that printing distance showed almost no change in the printed trace pitch. Crosstalk interference between adjacent signal traces was analyzed across frequencies and validated both experimentally and through simulation; no crosstalk was visible for printed traces at input frequencies below 600 kHz. Moreover, we demonstrate printed trace reliability against thermal shock, whereby no discontinuation in conductive traces was observed. Our findings establish design guidelines for MMAM electronics, advancing digital signal transmission capabilities.

3.
ACS Macro Lett ; 13(4): 389-394, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38488582

RESUMEN

The reversible formation and cleavage of disulfide bonds under physical/chemical stimuli make it a valuable motif in constructing dynamically cross-linked materials. In the present work, the block copolymer bearing pendent dithiolanes was synthesized and fabricated into isoporous membranes by the combination of self-assembly and nonsolvent-induced phase separation strategy. The cross-linking within the membrane was realized by the thiol-initiated ring-opening cascades of cyclic disulfides. Successful formation of disulfide bond networks within the isoporous membranes was proved by the Raman spectra, UV-vis diffuse reflectance spectroscopy, differential scanning calorimetry, and rheological analysis. The cross-linking in membranes was further demonstrated by the notably improved toughness and obviously enhanced swelling resistance to acid/alkaline solution as well as organic solvents. Importantly, the cross-linked isoporous membranes were fully dissolvable in solution containing dithiothreitol, which enabled the complete cleavage of disulfide bonds and successful recovery of the block copolymer that was able to be repeatedly fabricated into isoporous membranes with pore sizes identical to membranes prepared from the freshly synthesized copolymer. Our results indicate that dynamically cross-linked isoporous membranes with improved durability and good recyclability can be custom-made by simply incorporating active dithiolane moieties into self-assembling block copolymers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...