Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 253(Pt 4): 126956, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37739291

RESUMEN

Pinctada fucata is an important pearl production shellfish in aquaculture. The formation of shells and pearls is a hot research topic in biomineralization, and matrix proteins secreted by the mantle tissues play the key role in this process. However, upstream regulatory mechanisms of transcription factors on the matrix protein genes remain unclear. Previous studies have shown that NF-κB signaling pathway regulated biomineralization process through expression regulation of specific matrix proteins, including Nacrein, Prismalin-14 and MSI60. In this study, we systematically investigated the regulatory effect of the NF-κB signaling pathway key factor Pf-Rel and inhibitory protein poI-κB on the biomineralization and shell regeneration process. We applied RNA interference and antibody injection assays to study in vivo function of transcription factor Pf-Rel and characterized shell morphology changes using scanning electron microscopy and Raman spectroscopy. We found that transcription factor Pf-Rel plays a positive regulatory role in the growth regulation of the prismatic and nacreous layers, while the function of inhibitory protein poI-κB is to prevent excessive growth and accumulation of both layers. RNA-seq was conducted based on RNA interference animal model to identify potential regulatory genes by transcription factor Pf-Rel. Shell damage repair experiments were performed to simulate shell regeneration process, and observations of newly formed shells revealed that NF-κB signaling pathway had different functions at different times. This study provides us with a more macroscopic perspective based on transcription factors to investigate biomineralization and shell regeneration.


Asunto(s)
FN-kappa B , Pinctada , Animales , FN-kappa B/metabolismo , Biomineralización , Pinctada/química , Transducción de Señal , Regulación de la Expresión Génica , Exoesqueleto/química
2.
Int J Biol Macromol ; 224: 754-765, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36346258

RESUMEN

For both nacre formation and biomineralization in mollusks, understanding the molecular mechanism is imperative. Biomineralization, especially shell formation, is dedicatedly regulated by multiple matrix proteins. However, ACC conversion to stable crystals still lacks positive factors. In this research, we found a novel matrix protein named PNU5 in Pinctada fucata that plays a regulatory role in both prismatic layer and nacreous layer formation. Functional studies in vivo and in vitro have shown that it might be involved in shell formation in a positive manner. RT-qPCR analysis showed that pnu5 was highly expressed in mantle pallial and participated in shell repairing and regeneration. RNAi-mediated repression of pnu5 could affect the normal structure of prismatic layer and nacreous layer. The recombinant protein rPNU5 significantly enhanced the precipitation rate of CaCO3 both in the calcite and aragonite crystallization systems, as well as altering the morphology of the crystals. Based on ACC transition experiments, the recombinant protein rPNU5 facilitated amorphous calcium carbonate (ACC) transformation into stable calcite or aragonite. This study could provide us with a better understanding of how positive regulatory mechanisms contribute to biomineralization.


Asunto(s)
Carbonato de Calcio , Nácar , Animales , Carbonato de Calcio/química , Secuencia de Aminoácidos , Nácar/metabolismo , Proteínas Recombinantes/metabolismo , Exoesqueleto/metabolismo
3.
Biotechnol Bioeng ; 116(4): 805-815, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30537067

RESUMEN

Halomonas has been developed as a platform for the next generation industrial biotechnology allowing open and nonsterile growth without microbial contamination under a high-salt concentration and alkali pH. To reduce downstream cost associated with continuous centrifugation and salt containing wastewater treatment, Halomonas campaniensis strain LS21 was engineered to become self-flocculating by knocking out an etf operon encoding two subunits of an electron transferring flavoprotein in the predicted electron transfer chain. Self-flocculation could be attributed to the decrease of the surface charge and increase of the cellular hydrophobicity resulted from deleted etf. A wastewaterless fermentation strategy based on the self-flocculating H. campaniensis was developed for growth and the production of poly-3-hydroxybutyrate (PHB) as an example. Most microbial cells flocculated and precipitated to the bottom of the bioreactor within 1 min after stopping the aeration and agitation. The supernatant can be used again without sterilization or inoculation for the growth of the next batch after collecting the precipitated cell mass. The wastewaterless process was conducted for four runs without generating wastewater. PHB accumulation by the self-flocculent strain was enhanced via promoter and ribosome binding site optimizations, the productivities of cell dry weight and PHB were increased from 0.45 and 0.18 g·L -1 ·hr -1 for the batch process compared to 0.82 and 0.33 g·L -1 ·hr -1 for the wastewaterless continuous process, respectively. This has clearly demonstrated the advantages of the wastewaterless process in that it not only reduces wastewater but also increases cell growth and product formation efficiency in a given period of time.


Asunto(s)
Fermentación , Halomonas/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Aguas Residuales/microbiología , Reactores Biológicos/microbiología , Ingeniería Celular/métodos , Floculación , Halomonas/genética , Halomonas/crecimiento & desarrollo , Microbiología Industrial/métodos , Aguas Residuales/análisis , Purificación del Agua/métodos
4.
Metab Eng ; 49: 275-286, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30219528

RESUMEN

Halomonas bluephagenesis has been developed as a platform strain for the next generation industrial biotechnology (NGIB) with advantages of resistances to microbial contamination and high cell density growth (HCD), especially for production of polyhydroxyalkanoates (PHA) including poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). However, little is known about the mechanism behind PHA accumulation under oxygen limitation. This study for the first time found that H. bluephagenesis utilizes NADH instead of NADPH as a cofactor for PHB production, thus revealing the rare situation of enhanced PHA accumulation under oxygen limitation. To increase NADH/NAD+ ratio for enhanced PHA accumulation under oxygen limitation, an electron transport pathway containing electron transfer flavoprotein subunits α and ß encoded by etf operon was blocked to increase NADH supply, leading to 90% PHB accumulation in the cell dry weight (CDW) of H. bluephagenesis compared with 84% by the wild type. Acetic acid, a cost-effective carbon source, was used together with glucose to balance the redox state and reduce inhibition on pyruvate metabolism, resulting in 22% more CDW and 94% PHB accumulation. The cellular redox state changes induced by the addition of acetic acid increased 3HV ratio in its copolymer PHBV from 4% to 8%, 4HB in its copolymer P34HB from 8% to 12%, respectively, by engineered H. bluephagenesis. The strategy of systematically modulation on the redox potential of H. bluephagenesis led to enhanced PHA accumulation and controllable monomer ratios in PHA copolymers under oxygen limitation, reducing energy consumption and scale-up complexity.


Asunto(s)
Halomonas/metabolismo , Hidroxibutiratos/metabolismo , Ingeniería Metabólica , NAD/metabolismo , Poliésteres/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Halomonas/genética , NAD/genética , Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...