RESUMEN
This article focuses on the approximate controllability of impulsive neutral stochastic integrodifferential inclusions in Hilbert spaces. We used resolvent operators, fixed point approaches, and semigroup theory to achieve the article's main results. First, we focus on the existence of approximate controllability, and we develop the existence results with nonlocal conditions. At last, an application is provided to illustrate the concept.
RESUMEN
BACKGROUND: Malaria infection can result in distinct clinical outcomes from asymptomatic to severe. The association between patho-physiological changes and molecular changes in the host, and their correlation with severity of malaria progression is not fully understood. METHODS: In this study, we addressed mass spectrometry-based temporal profiling of serum metabolite levels from mice infected with Plasmodium berhgei (strain ANKA). RESULTS: We show global perturbations and identify changes in specific metabolites in correlation with disease progression. While metabolome-wide changes were apparent in late-stage malaria, a subset of metabolites exhibited highly correlated changes with disease progression. These metabolites changed early on following infection and either continued or maintained the change as mice developed severe disease. Some of these have the potential to be sentinel metabolites for severe malaria. Moreover, glycolytic metabolites, purine nucleotide precursors, tryptophan and its bioactive derivatives were many fold decreased in late-stage disease. Interestingly, uric acid, a metabolic waste reported to be elevated in severe human malaria, increased with disease progression, and subsequently appears to be detoxified into allantoin. This detoxification mechanism is absent in humans as they lack the enzyme uricase. CONCLUSIONS: We have identified candidate marker metabolites that may be of relevance in the context of human malaria.
Asunto(s)
Malaria , Parásitos , Ratones , Animales , Humanos , Metabolómica , Malaria/parasitología , Metaboloma , Progresión de la Enfermedad , Plasmodium bergheiRESUMEN
Despite ongoing efforts to control malaria infection, progress in lowering the number of deaths and infections appears to have stalled. The continued high incidence of malaria infection and mortality is in part due to emergence of parasites resistant to frontline antimalarials. This highlights the need for continued identification of novel protein drug targets. Mitochondrial functions in Plasmodium falciparum, the deadliest species of human malaria parasite, are targets of validated antimalarials including atovaquone and proguanil (Malarone). Thus, there has been great interest in identifying other essential mitochondrial proteins as candidates for novel drug targets. Garnering an increased understanding of the proteomic landscape inside the P. falciparum mitochondrion will also allow us to learn about the basic biology housed within this unique organelle. We employed a proximity biotinylation technique and mass spectrometry to identify novel P. falciparum proteins putatively targeted to the mitochondrion. We fused the leader sequence of a mitochondrially targeted chaperone, Hsp60, to the promiscuous biotin ligase TurboID. Through these experiments, we generated a list of 122 "putative mitochondrial" proteins. To verify whether these proteins were indeed mitochondrial, we chose five candidate proteins of interest for localization studies using ectopic expression and tagging of each full-length protein. This allowed us to localize four candidate proteins of unknown function to the mitochondrion, three of which have previously been assessed to be essential. We suggest that phenotypic characterization of these and other proteins from this list of 122 could be fruitful in understanding the basic mitochondrial biology of these parasites and aid antimalarial drug discovery efforts.
Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Antimaláricos/uso terapéutico , Atovacuona/uso terapéutico , Biotinilación , Combinación de Medicamentos , Humanos , Malaria/parasitología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proguanil/uso terapéutico , ProteómicaRESUMEN
The present article presents a novel idea regarding the implementation of Tiwari and Das model on Reiner-Philippoff fluid (RPF) model by considering blood as a base fluid. The Cattaneo-Christov model and thermal radiative flow have been employed to study heat transfer analysis. Tiwari and Das model consider nanoparticles volume fraction for heat transfer enhancement instead of the Buongiorno model which heavily relies on thermophoresis and Brownian diffusion effects for heat transfer analysis. Maxwell velocity and Temperature slip boundary conditions have been employed at the surface of the sheet. By utilizing the suitable transformations, the modeled PDEs (partial-differential equations) are renewed in ODEs (ordinary-differential equations) and treated these equations numerically with the aid of bvp4c technique in MATLAB software. To check the reliability of the proposed scheme a comparison with available literature has been made. Other than Buongiorno nanofluid model no attempt has been made in literature to study the impact of nanoparticles on Reiner-Philippoff fluid model past a stretchable surface. This article fills this gap available in the existing literature by considering novel ideas like the implementation of carbon nanotubes, CCHF, and thermal radiation effects on Reiner-Philippoff fluid past a slippery expandable sheet. Momentum, as well as temperature slip boundary conditions, are never studied and considered before for the case of Reiner-Philippoff fluid past a slippery expandable sheet. In the light of physical effects used in this model, it is observed that heat transfer rate escalates as a result of magnification in thermal radiation parameter which is 18.5% and skin friction coefficient diminishes by the virtue of amplification in the velocity slip parameter and maximum decrement is 67.9%.
Asunto(s)
Modelos Teóricos , Nanotubos de Carbono/química , Simulación por Computador , Análisis de Fourier , Programas Informáticos , Temperatura , ViscosidadRESUMEN
In Ocimum kilimandscharicum, the relative volatile composition of camphor in leaves was as high as 55%, while that of eugenol in roots was 57%. These metabolites were differentially partitioned between the aerial and root tissues. Global metabolomics revealed tissue-specific biochemical specialization, evident by the differential distribution of 2588 putative metabolites across nine tissues. Next-generation sequencing analysis indicated differential expression of 51 phenylpropanoid and 55 terpenoid pathway genes in aerial and root tissues. By integrating metabolomics with transcriptomics, the camphor biosynthesis pathway in O. kilimandscharicum was elucidated. In planta bioassays revealed the role of geranyl diphosphate synthase (gpps) and borneol dehydrogenase (bdh) in camphor biosynthesis. Further, the partitioning of camphor was attributed to tissue-specific gene expression of both the pathway entry point (gpps) and terminal (bdh) enzyme. Unlike camphor, eugenol accumulated more in roots; however, absence of the eugenol synthase gene in roots indicated long distance transport from aerial tissues. In silico co-expression analysis indicated the potential involvement of ATP-binding cassette, multidrug and toxic compound extrusion, and sugar transporters in eugenol transport. Similar partitioning was evident across five other Ocimum species. Overall, our work indicates that metabolite partitioning maybe a finely regulated process, which may have implications on plant growth, development, and defense.
Asunto(s)
Ocimum basilicum , Ocimum , Aceites Volátiles , Alcanfor , EugenolRESUMEN
Metabolic changes alter the cellular milieu; can this also change intracellular protein folding? Since proteostasis can modulate mutational buffering, if change in metabolism has the ability to change protein folding, arguably, it should also alter mutational buffering. Here we find that altered cellular metabolic states in E. coli buffer distinct mutations on model proteins. Buffered-mutants have folding problems in vivo and are differently chaperoned in different metabolic states. Notably, this assistance is dependent upon the metabolites and not on the increase in canonical chaperone machineries. Being able to reconstitute the folding assistance afforded by metabolites in vitro, we propose that changes in metabolite concentrations have the potential to alter protein folding capacity. Collectively, we unravel that the metabolite pools are bona fide members of proteostasis and aid in mutational buffering. Given the plasticity in cellular metabolism, we posit that metabolic alterations may play an important role in cellular proteostasis.
Asunto(s)
Proteostasis/fisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Metaboloma/genética , Mutación/genética , Presión Osmótica/fisiología , Pliegue de Proteína , Proteostasis/genéticaRESUMEN
A PCR targeting mitochondrial cytochrome oxidase subunit III (cox3) for molecular detection of Babesia gibsoni infection in dogs has been developed in this study. Fifty blood samples from suspected clinical cases from dogs, brought to the veterinary college clinics, were examined for presence of B. gibsoni using conventional diagnosis by microscopic examination of Giemsa stained thin blood smears. In addition, species specific PCRs targeting ITS-1 region (BgITS-1 PCR) and nested PCR targeting 18S ribosomal RNA gene (Bg18SnPCR) were carried out. A 634 bp PCR fragment of B. gibsoni cox3 gene was amplified in positive samples from three geographical locations of Satara, Wai and Pune in Maharashtra state of India. From analysis of the sequence of the B. gibsoni cox3 gene, we found that the Indian isolate had 96-98% similarity to the isolate from Japan and China. Post sequencing, de-novo diagnostic primer pair for species specific amplification of 164 bp fragment of B. gibsonicox3 was designed and the PCR was standardized. The diagnostic results of de-novo Bgcox3 PCR were compared with BgITS-1 PCR and Bg18S nPCR. Thin blood smears detected 22% (11/50) samples positive for small form of Babesia species. The BgITS-1 PCR detected 25% samples (15/50) as positive and Bg18S nPCR detected 80% (40/50) B. gibsoni positive samples. The de-novo Bgcox3 PCR detected 66% (33/50) samples positive for B. gibsoni (at 95% CI). The analytical sensitivity of cox3 PCR was evaluated as 0.000003% parasitaemia or 09 parasites in 100â¯â¯µl of blood. The de-novo diagnostic cox3 PCR did not cross react with control positive DNA from other haemoprotozoa and rickettsia like B. vogeli, Hepatozoon canis, Trypanosoma evansi, Ehrlichia canis and Anaplasma platys. Statistically, cox3 PCR had better diagnostic efficiency than ITS-1 PCR in terms of sensitivity (pâ¯=â¯0.0006). No statistically significant difference between results of cox3 PCR and 18S nPCR was observed (pâ¯=â¯0.1760). Kappa values estimated for each test pair showed fair to moderate agreement between the observations. Specificity of Bgcox3 PCR was 100% when compared with microscopy or BgITS-1 PCR. Sensitivity of Bgcox3 PCR was 100% when compared with that of Bg18S nPCR.
Asunto(s)
Babesia/aislamiento & purificación , Babesiosis/diagnóstico , Enfermedades de los Perros/diagnóstico , Complejo IV de Transporte de Electrones/genética , Mitocondrias/enzimología , Animales , Babesia/clasificación , Babesia/genética , Babesiosis/parasitología , Secuencia de Bases , Reacciones Cruzadas , ADN Espaciador Ribosómico/química , Enfermedades de los Perros/parasitología , Perros , Eritrocitos/parasitología , Funciones de Verosimilitud , Filogenia , Reacción en Cadena de la Polimerasa/veterinaria , Valor Predictivo de las Pruebas , ARN Ribosómico 18S/análisis , Sensibilidad y Especificidad , Alineación de Secuencia/veterinariaRESUMEN
Toxoplasma gondii can grow and replicate using either glucose or glutamine as the major carbon source. Here, we have studied the essentiality of glycolysis in the tachyzoite and bradyzoite stages of T. gondii, using transgenic parasites that lack a functional hexokinase gene (Δhk) in RH (Type-1) and Prugniaud (Type-II) strain parasites. Tachyzoite stage Δhk parasites exhibit a fitness defect similar to that reported previously for the major glucose transporter mutant, and remain virulent in mice. However, although Prugniaud strain Δhk tachyzoites were capable of transforming into bradyzoites in vitro, they were severely compromised in their ability to make mature bradyzoite cysts in the brain tissue of mice. Isotopic labelling studies reveal that glucose-deprived tacyzoites utilise glutamine to replenish glycolytic and pentose phosphate pathway intermediates via gluconeogenesis. Interestingly, while glutamine-deprived intracellular Δhk tachyzoites continued to replicate, extracellular parasites were unable to efficiently invade host cells. Further, studies on mutant tachyzoites lacking a functional phosphoenolpyruvate carboxykinase (Δpepck1) revealed that glutaminolysis is the sole source of gluconeogenic flux in glucose-deprived parasites. In addition, glutaminolysis is essential for sustaining oxidative phosphorylation in Δhk parasites, while wild type (wt) and Δpepck1 parasites can obtain ATP from either glycolysis or oxidative phosphorylation. This study provides insights into the role of nutrient metabolism during asexual propagation and development of T. gondii, and validates the versatile nature of central carbon and energy metabolism in this parasite.
Asunto(s)
Carbono/metabolismo , Glucólisis , Toxoplasma/crecimiento & desarrollo , Toxoplasma/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Encéfalo/parasitología , Modelos Animales de Enfermedad , Eliminación de Gen , Gluconeogénesis , Glutamina/metabolismo , Hexoquinasa/deficiencia , Análisis de Flujos Metabólicos , Ratones , Fosforilación Oxidativa , Fosfoenolpiruvato Carboxiquinasa (ATP)/deficiencia , Toxoplasmosis/parasitología , Toxoplasmosis/patología , VirulenciaRESUMEN
To identify novel antitrypanosomal agents based on Janadolide, a potent macrocyclic polyketide-peptide hybrid, a macrolactonization strategy was explored. We prepared des-tert-butyl Janadolide and evaluated its antitrypanosomal activity. Our findings suggest that the tert-butyl group is necessary for the desired bioactivity.
RESUMEN
Asparagus racemosus (Shatavari), belongs to the family Asparagaceae and is known as a "curer of hundred diseases" since ancient time. This plant has been exploited as a food supplement to enhance immune system and regarded as a highly valued medicinal plant in Ayurvedic medicine system for the treatment of various ailments such as gastric ulcers, dyspepsia, cardiovascular diseases, neurodegenerative diseases, cancer, as a galactogogue and against several other diseases. In depth metabolic fingerprinting of various parts of the plant led to the identification of 13 monoterpenoids exclusively present in roots. LC-MS profiling led to the identification of a significant number of steroidal saponins (33). However, we have also identified 16 triterpene saponins for the first time in A. racemosus. In order to understand the molecular basis of biosynthesis of major components, transcriptome sequencing from three different tissues (root, leaf and fruit) was carried out. Functional annotation of A. racemosus transcriptome resulted in the identification of 153 transcripts involved in steroidal saponin biosynthesis, 45 transcripts in triterpene saponin biosynthesis, 44 transcripts in monoterpenoid biosynthesis and 79 transcripts in flavonoid biosynthesis. These findings will pave the way for better understanding of the molecular basis of steroidal saponin, triterpene saponin, monoterpenoids and flavonoid biosynthesis in A. racemosus.
Asunto(s)
Asparagus/metabolismo , Perfilación de la Expresión Génica , Metabolómica , Saponinas/biosíntesis , Frutas/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismoRESUMEN
Malignant mesothelioma is an aggressive cancer in desperate need of treatment. We have previously shown that extracellular signaling regulated kinase 5 (ERK5) plays an important role in mesothelioma pathogenesis using ERK5 silenced human mesothelioma cells exhibiting significantly reduced tumor growth in immunocompromised mice. Here, we used a specific ERK 5 inhibitor, XMD8-92 in various in vitro and in vivo models to demonstrate that inhibition of ERK5 can slow down mesothelioma tumorigenesis. First, we show a dose dependent toxicity of XMD8-92 to 2 human mesothelioma cell lines growing as a monolayer. We also demonstrate the inhibition of ERK5 phosphorylation in various human mesothelioma cell lines by XMD8-92. We further confirmed the toxicity of XMD8-92 towards mesothelioma cell lines grown as spheroids in a 3-D model as well as in intraperitoneal (immune-competent) and intrapleural (immune-deficient) mouse models with and without chemotherapeutic drugs. To ascertain the mechanism, we explored the role of the nod-like receptor family member containing a pyrin domain 3 (NLRP3) inflammasome in the process. We found XMD8-92 attenuated naïve and chemotherapeutic-induced inflammasome priming and activation in mesothelioma cells. It can thus be concluded that ERK5 inhibition attenuates mesothelioma tumor growth and this phenomenon in part is regulated by the inflammasome.
RESUMEN
The Malaria Box collection includes 400 chemically diverse small molecules with documented potency against malaria parasite growth, but the underlying modes of action are largely unknown. Using complementary phenotypic screens against Plasmodium falciparum and Toxoplasma gondii, we report phenotype-specific hits based on inhibition of overall parasite growth, apicoplast segregation, and egress or host invasion, providing hitherto unavailable insights into the possible mechanisms affected. First, the Malaria Box library was screened against tachyzoite stage T. gondii and the half-maximal effective concentrations (EC50s) of molecules showing ≥80% growth inhibition at 10 µM were determined. Comparison of the EC50s for T. gondii and P. falciparum identified a subset of 24 molecules with nanomolar potency against both parasites. Thirty molecules that failed to induce acute growth inhibition in T. gondii tachyzoites in a 2-day assay caused delayed parasite death upon extended exposure, with at least three molecules interfering with apicoplast segregation during daughter cell formation. Using flow cytometry and microscopy-based examinations, we prioritized 26 molecules with the potential to inhibit host cell egress/invasion during asexual developmental stages of P. falciparum. None of the inhibitors affected digestive vacuole integrity, ruling out a mechanism mediated by broadly specific protease inhibitor activity. Interestingly, five of the plasmodial egress inhibitors inhibited ionophore-induced egress of T. gondii tachyzoites. These findings highlight the advantage of comparative and targeted phenotypic screens in related species as a means to identify lead molecules with a conserved mode of action. Further work on target identification and mechanism analysis will facilitate the development of antiparasitic compounds with cross-species efficacy. IMPORTANCE The phylum Apicomplexa includes many human and animal pathogens, such as Plasmodium falciparum (human malaria) and Toxoplasma gondii (human and animal toxoplasmosis). Widespread resistance to current antimalarials and the lack of a commercial vaccine necessitate novel pharmacological interventions with distinct modes of action against malaria. For toxoplasmosis, new drugs to effectively eliminate tissue-dwelling latent cysts of the parasite are needed. The Malaria Box antimalarial collection, managed and distributed by the Medicines for Malaria Venture, includes molecules of novel chemical classes with proven antimalarial efficacy. Using targeted phenotypic assays of P. falciparum and T. gondii, we have identified a subset of the Malaria Box molecules as potent inhibitors of plastid segregation and parasite invasion and egress, thereby providing early insights into their probable mode of action. Five molecules that inhibit the egress of both parasites have been identified for further mechanistic studies. Thus, the approach we have used to identify novel molecules with defined modes of action in multiple parasites can expedite the development of pan-active antiparasitic agents.
RESUMEN
BACKGROUND: To diagnose and characterize the perianal fistulous disease using Magnetic resonance imaging (MRI) in a hilly and rural area of North India. MATERIAL/METHODS: This prospective hospital based study was conducted for a period of one year from April 2014 to April 2015 in the departments of Radiodiagnosis and Surgery of our institute. A total of 50 consecutive patients presenting with perianal fistulous disease fulfilling the inclusion and exclusion criteria were included in the study and taken up for MRI. The perianal fistulae were classified according to St James University hospital classification and tracks were assessed with regard to anatomical plane, length, ramifications, abscess formation, enteric communication, external cutaneous opening, enhancement and suprasphincteric extension. Surgical correlation was done in 31 patients who opted for surgical treatment. Rest of the 19 patients preferred alternative medicine for treatment or chose to postpone their surgery. RESULTS: The disease was much more prevalent in males in comparison to females with male to female ratio of 24:1. Grade 4 was the most common type of fistula (34%) while Grade 5 was the least common type (4%).MRI showed a high sensitivity of 93.7% and positive predictive value (PPV) of 96.7% when correlated with surgical findings. A substantial number of patients (38%) preferred alternative medicine or non surgical form of treatment. CONCLUSIONS: MRI is a very sensitive modality for the evaluation of perianal fistula. In our study group, the disease predominantly affected middle aged men. Ramifications and abscesses were commonly seen, affecting nearly half of the patients and majority of the patients had active fistulous tracks with posteriorly located enteric opening. Overall, transsphincteric fistulae were most common. Significant number of patients avoided surgery or showed preference for non surgical treatment.
RESUMEN
We present a case of a 55-year-old male with a history of urethroscopic calculus removal who later developed urinary tract infection (UTI), complicated by periurethral abscess formation with osteomyelitis of the inferior pubic ramus and a urethrocutaneous fistula after surgical drainage of the abscess. UTI with periurethral abscess and urethrocutaneous fistula (watering-can perineum) is a rare complication of UTI. A periurethral abscess with pubic osteomyelitis has not been previously reported.
RESUMEN
Endoscopic procedures performed under conscious sedation require careful monitoring of respiratory status to prevent adverse outcomes. This study utilizes a non-invasive respiratory volume monitor (RVM) that provides continuous real-time measurements of minute ventilation (MV), tidal volume and respiratory rate (RR) to assess the adequacy of ventilation during endoscopy. Digital respiratory traces were collected from 51 patients undergoing upper endoscopy with propofol sedation using an impedance-based RVM. Baseline MV for each patient was derived from a 30 s period of quiet breathing prior to sedation (MVBASELINE). Capnography data were also collected. Because RR from capnography was frequently unavailable, the RVM RR's were used for analysis. RR rate values were compared the MV measurements and sensitivity and specificity of RR to predict inadequate ventilation (MV <40 % MVBASELINE) were calculated. Initial analysis revealed that there is a weak correlation between an MV measurement and its corresponding RR measurement (r = 0.05). If MV is an actual indictor of respiratory performance, using RR as a proxy is grossly inadequate. Simulating a variety of RR alarm conditions [4-8 breaths/min (bpm)] showed that a substantial fraction of low MV measurements (MV <40 % MVBASELINE) went undetected (at 8 bpm, >70 % low MV measurements were missed; at 6 bpm, >82 % were missed; and at 4 bpm, >90 % were missed). A cut-off of 6 bpm had a sensitivity of only 18.2 %; while <40 % of all RR alarms would have coincided with a low MV (39.4 % PPV). Low RR measurements alone do not reflect episodes of low MV and are not sufficient for accurate assessment of respiratory status. RVM provides a new way to collect MV measurements which provide more comprehensive data than RR alone. Further work is ongoing to evaluate the use of MV data during procedural sedation.
Asunto(s)
Endoscopía Gastrointestinal/métodos , Mediciones del Volumen Pulmonar/métodos , Monitoreo Intraoperatorio/métodos , Ventilación Pulmonar , Frecuencia Respiratoria , Femenino , Humanos , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
BACKGROUND: If a kidney does not ascend as it should in normal fetal development, it remains in the pelvic area and is called a pelvic kidney. Often a person with a pelvic kidney will go through his/her whole life unaware of this condition, unless it is discovered during neonatal kidney ultrasound screening or if complications arise later in life due to this or a completely different reason and the condition is noted during investigations. Generally, this is not a harmful condition but it can lead to complications like in our case. With appropriate testing and treatment, if needed, an ectopic kidney should cause no serious long-term health complications and all that may be required for the patient is reassurance with advice to follow up at regular intervals. CASE REPORT: A 28-year-old male presented with recurrent pain in his lower left abdomen for one month and an episode of hematuria 3 days earlier accompanied by an attack of acute pain lasting for 3-4 hours. He gave a history of passing 2 small (about 5 mm each) calculi in his urine after the occurrence of hematuria, following which pain decreased in intensity. No history of fever was present. CONCLUSIONS: Although a simple ectopic kidney seldom causes symptoms, the association of malrotation of the renal pelvis with calculus increases the risk of hematuria and/or hydronephrosis, presenting with colicky pain as in the present case. The clinician should be aware of these in such a case. If asymptomatic, no treatment is required. However, the patient should be advised to have follow-up ultrasounds at regular intervals to detect complications like calculus, hydronephrosis, etc. With appropriate testing and treatment, if required, an ectopic kidney should not cause serious long-term health complications.
RESUMEN
Malignant mesothelioma (MM) is an aggressive tumor with no treatment regimen. Previously we have demonstrated that cyclic AMP response element binding protein (CREB) is constitutively activated in MM tumor cells and tissues and plays an important role in MM pathogenesis. To understand the role of CREB in MM tumor growth, we generated CREB-inhibited MM cell lines and performed in vitro and in vivo experiments. In vitro experiments demonstrated that CREB inhibition results in significant attenuation of proliferation and drug resistance of MM cells. CREB-silenced MM cells were then injected into severe combined immunodeficiency mice, and tumor growth in s.c. and i.p. models of MM was followed. We observed significant inhibition in MM tumor growth in both s.c. and i.p. models and the presence of a chemotherapeutic drug, doxorubicin, further inhibited MM tumor growth in the i.p. model. Peritoneal lavage fluids from CREB-inhibited tumor-bearing mice showed a significantly reduced total cell number, differential cell counts, and pro-inflammatory cytokines and chemokines (IL-6, IL-8, regulated on activation normal T cell expressed and secreted, monocyte chemotactic protein-1, and vascular endothelial growth factor). In vitro studies showed that asbestos-induced inflammasome/inflammation activation in mesothelial cells was CREB dependent, further supporting the role of CREB in inflammation-induced MM pathogenesis. In conclusion, our data demonstrate the involvement of CREB in the regulation of MM pathogenesis by regulation of inflammation.
Asunto(s)
Proteína de Unión a CREB/metabolismo , Neoplasias Pulmonares/patología , Mesotelioma/patología , Animales , Amianto/efectos adversos , Línea Celular Tumoral , Quimiocina CCL2/metabolismo , Quimiocinas/metabolismo , Modelos Animales de Enfermedad , Doxorrubicina/farmacología , Perfilación de la Expresión Génica , Xenoinjertos , Humanos , Inflamación , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Neoplasias Pulmonares/metabolismo , Masculino , Mesotelioma/metabolismo , Mesotelioma Maligno , Ratones , Ratones SCID , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Irritant gas exposure may lead to significant respiratory distress as is seen in the present case of 25 year old male worker who suffered accidental phosgene inhalation. He remained asymptomatic for six hours but later landed up in Acute Respiratory Distress Syndrome in the hospital and required ventilatory support. No investigative feature is diagnostic of the nature of irritant gas. Similarly there is no antidote available to the phosgene. Only timely administered supportive management may lead to successful outcome.