Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Naturae ; 16(2): 82-89, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188266

RESUMEN

The vaccinia virus (VACV) has been used for prophylactic immunization against smallpox for many decades. However, the VACV-based vaccine had been highly reactogenic. Therefore, after the eradication of smallpox, the World Health Organization in 1980 recommended that vaccination against this infection be discontinued. As a result, there has been a rise in the occurrence of orthopoxvirus infections in humans in recent years, with the most severe being the 2022 monkeypox epidemic that reached all continents. Thus, it is crucial to address the pressing matter of developing safe and highly immunogenic vaccines for new generations to combat orthopoxvirus infections. In a previous study, we created a LAD strain by modifying the LIVP (L) VACV strain, which is used as a first-generation smallpox vaccine in Russia. This modification involved introducing mutations in the A34R gene to enhance extracellular virion production and deleting the A35R gene to counteract the antibody response to the viral infection. In this study, a strain LADA was created with an additional deletion in the DNA of the LAD strain ati gene. This ati gene directs the production of a major non-virion immunogen. The findings indicate that the LADA VACV variant exhibits lower levels of reactogenicity in BALB/c mice during intranasal infection, as compared to the original L strain. Following intradermal immunization with a 105 PFU dose, both the LAD and LADA strains were found to induce a significantly enhanced cellular immune response in mice when compared to the L strain. At the same time, the highest level of virus-specific IFN-γ producing cells for the LAD variant was detected on the 7th day post-immunization (dpi), whereas for LADA, it was observed on 14 dpi. The LAD and LADA strains induced significantly elevated levels of VACV-specific IgG compared to the original L strain, particularly between 28 and 56 dpi. The vaccinated mice were intranasally infected with the cowpox virus at a dose of 460 LD50 to assess the protective immunity at 62 dpi. The LADA virus conferred complete protection to mice, with the LAD strain providing 70% protection and the parent strain L offering protection to only 60% of the animals.

2.
Acta Naturae ; 15(3): 82-90, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908769

RESUMEN

Among the nonvirion proteins of the vaccinia virus (VACV), a 94-kDa long protein is most abundantly present; the protein is a truncated form of the 150-kDa A-type inclusion (ATI) protein of the cowpox virus encoded by the ati gene. This VACV protein does not form intracellular ATIs, being as it is a major immunogen upon infection/immunization of humans or animals with the VACV. Antibodies specific to this protein are not virus-neutralizing. The present study focused on the effect of the production of this nonstructural major immunogenic VACV protein on the manifestation of pathogenicity and immunogenicity of the virus in the BALB/c mouse model of infection. In order to introduce a targeted deletion into the VACV LIVP genome, the recombinant integration/deletion plasmid pΔati was constructed and further used to generate the recombinant virus LIVPΔati. The pathogenicity of the VACV LIVP and LIVPΔati strains was studied in 3-week-old mice. The mice were intranasally infected with the viruses at a dose of 107 pfu; 50% of the animals infected with the parent LIVP strain died, while infection with the LIVPΔati strain led to the death of only 20% of the mice. Intradermal vaccination of mice aged 6- weeks with the LIVPΔati virus statistically significantly increased the production of VACV-specific IgG, compared to that after intradermal vaccination with VACV LIVP. Meanwhile, no differences were noted in the cell-mediated immune response to the vaccination of mice with VACV LIVP or LIVPΔati, which was assessed by ELISpot according to the number of splenocytes producing IFN-γ in response to stimulation with virus-specific peptides. Intranasal infection of mice with lethal doses of the cowpox virus or the ectromelia virus on day 60 post-immunization with the studied VACV variants demonstrated that the mutant LIVPΔati elicits a stronger protective response compared to the parent LIVP.

3.
Vopr Virusol ; 68(3): 215-227, 2023 07 06.
Artículo en Ruso | MEDLINE | ID: mdl-37436413

RESUMEN

INTRODUCTION: Intranasal vaccination using live vector vaccines based on non-pathogenic or slightly pathogenic viruses is the one of the most convenient, safe and effective ways to prevent respiratory infections, including COVID-19. Sendai virus is the best suited for this purpose, since it is respiratory virus and is capable of limited replication in human bronchial epithelial cells without causing disease. The aim of the work is to design and study the vaccine properties of recombinant Sendai virus, Moscow strain, expressing secreted receptor-binding domain of SARS-CoV-2 Delta strain S protein (RBDdelta) during a single intranasal immunization. MATERIALS AND METHODS: Recombinant Sendai virus carrying insertion of RBDdelta transgene between P and M genes was constructed using reverse genetics and synthetic biology methods. Expression of RBDdelta was analyzed by Western blot. Vaccine properties were studied in two models: Syrian hamsters and BALB/c mice. Immunogenicity was evaluated by ELISA and virus-neutralization assays. Protectiveness was assessed by quantitation of SARS-CoV-2 RNA in RT-PCR and histological analysis of the lungs. RESULTS: Based on Sendai virus Moscow strain, a recombinant Sen-RBDdelta(M) was constructed that expressed a secreted RBDdelta immunologically identical to natural SARS-CoV-2 protein. A single intranasal administration of Sen-RBDdelta(M) to hamsters and mice significantly, by 15 and 107 times, respectively, reduced replicative activity of SARS-CoV-2 in lungs of animals, preventing the development of pneumonia. An effective induction of virus-neutralizing antibodies has also been demonstrated in mice. CONCLUSION: Sen-RBDdelta(M) is a promising vaccine construct against SARS-CoV-2 infection and has a protective properties even after a single intranasal introduction.


Asunto(s)
COVID-19 , Vacunas Virales , Cricetinae , Humanos , Ratones , Animales , Respirovirus/genética , Virus Sendai/genética , Vacunas contra la COVID-19 , COVID-19/prevención & control , Paramyxoviridae/genética , Vacunas Virales/genética , Anticuerpos Antivirales , Administración Intranasal , Moscú , ARN Viral , SARS-CoV-2/genética , Anticuerpos Neutralizantes
4.
Mol Ecol ; 25(7): 1449-64, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26841244

RESUMEN

Evaluating the relative importance of neutral and adaptive processes as determinants of population differentiation across environments is a central theme of evolutionary biology. We applied the QST-FST comparison flanked by a direct test for local adaptation to infer the role of climate-driven selection and gene flow in population differentiation of an annual grass Avena sterilis in two distinct parts of the species range, edge and interior, which represent two globally different climates, desert and Mediterranean. In a multiyear reciprocal transplant experiment, the plants of desert and Mediterranean origin demonstrated home advantage, and population differentiation in several phenotypic traits related to reproduction exceeded neutral predictions, as determined by comparisons of QST values with theoretical FST distributions. Thus, variation in these traits likely resulted from local adaptation to desert and Mediterranean environments. The two separate common garden experiments conducted with different experimental design revealed that two population comparisons, in contrast to multi-population comparisons, are likely to detect population differences in virtually every trait, but many of these differences reflect effects of local rather than regional environment. We detected a general reduction in neutral (SSR) genetic variation but not in adaptive quantitative trait variation in peripheral desert as compared with Mediterranean core populations. On the other hand, the molecular data indicated intensive gene flow from the Mediterranean core towards desert periphery. Although species range position in our study (edge vs. interior) was confounded with climate (desert vs. Mediterranean), the results suggest that the gene flow from the species core does not have negative consequences for either performance of the peripheral plants or their adaptive potential.


Asunto(s)
Clima , Flujo Génico , Genética de Población , Poaceae/genética , Selección Genética , Adaptación Fisiológica/genética , Evolución Biológica , Clima Desértico , Variación Genética , Israel , Región Mediterránea , Repeticiones de Microsatélite , Modelos Genéticos , Fenotipo , Carácter Cuantitativo Heredable
5.
Heredity (Edinb) ; 116(6): 485-90, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26837272

RESUMEN

Genetic architecture of adaptation is traditionally studied in the context of local adaptation, viz. spatially varying conditions experienced by the species. However, anthropogenic changes in the natural environment pose a new context to this issue, that is, adaptation to an environment that is new for the species. In this study, we used crossbreeding to analyze genetic architecture of adaptation to conditions not currently experienced by the species but with high probability of encounter in the near future due to global climate change. We performed targeted interpopulation crossing using genotypes from two core and two peripheral Triticum dicoccoides populations and raised the parents and three generations of hybrids in a greenhouse under simulated desert conditions to analyze the genetic architecture of adaptation to these conditions and an effect of gene flow from plants having different origin. The hybrid (F1) fitness did not differ from that of the parents in crosses where both plants originated from the species core, but in crosses involving one parent from the species core and another one from the species periphery the fitness of F1 was consistently higher than that of the periphery-originated parent. Plant fitness in the next two generations (F2 and F3) did not differ from the F1, suggesting that effects of epistatic interactions between recombining and segregating alleles of genes contributing to fitness were minor or absent. The observed low importance of epistatic gene interactions in allopolyploid T. dicoccoides and low probability of hybrid breakdown appear to be the result of permanent fixation of heterozygosity and lack of intergenomic recombination in this species. At the same time, predominant but not complete selfing combined with an advantage of bivalent pairing of homologous chromosomes appears to maintain high genetic variability in T. dicoccoides, greatly enhancing its adaptive ability.


Asunto(s)
Aclimatación , Flujo Génico , Aptitud Genética , Triticum/genética , Cambio Climático , Cruzamientos Genéticos , Epistasis Genética , Variación Genética , Genética de Población , Genotipo , Poliploidía
6.
Heredity (Edinb) ; 113(3): 268-76, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24690758

RESUMEN

The adaptive potential of a population defines its importance for species survival in changing environmental conditions such as global climate change. Very few empirical studies have examined adaptive potential across species' ranges, namely, of edge vs core populations, and we are unaware of a study that has tested adaptive potential (namely, variation in adaptive traits) and measured performance of such populations in conditions not currently experienced by the species but expected in the future. Here we report the results of a Triticum dicoccoides population study that employed transplant experiments and analysis of quantitative trait variation. Two populations at the opposite edges of the species range (1) were locally adapted; (2) had lower adaptive potential (inferred from the extent of genetic quantitative trait variation) than the two core populations; and (3) were outperformed by the plants from the core population in the novel environment. The fact that plants from the species arid edge performed worse than plants from the more mesic core in extreme drought conditions beyond the present climatic envelope of the species implies that usage of peripheral populations for conservation purposes must be based on intensive sampling of among-population variation.


Asunto(s)
Adaptación Fisiológica/genética , Triticum/genética , Clima , Cambio Climático , Sequías , Ambiente , Variación Genética/genética , Genoma de Planta/genética , Geografía , Dinámica Poblacional , Sitios de Carácter Cuantitativo/genética , Especificidad de la Especie
7.
Heredity (Edinb) ; 106(2): 300-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20551977

RESUMEN

Populations of predominantly selfing plant species often show spatial genetic structure but little is known whether epistatic gene interactions are spatially structured. To detect a possible epistatic effect and a spatial scale at which it operates, we created artificial crosses between plants spanning a range of fixed distances from 1 to 400 m in three populations of wild barley. The self-pollinated and crossed progeny (F(1)) and two generations of segregated progeny (F(2) and F(3)) were tested in experimentally simulated population environments for relative performance (RP). The measured fitness traits included number of seeds, total seed weight and seed germination. For any of these traits, there was no association between RP of F(1), F(2) and F(3) plants and either pairwise kinship coefficients or crossing distance. In contrast, in all three populations, we found lower seed viability of outcrossed as compared with self-pollinated genotypes in the first generation of segregation. However, in the F(3) generation this outbreeding effect disappeared in the two populations and greatly decreased in the third population. For seed production, heterosis in F(1) and outbreeding depression in F(2) were observed only in the population with unusually high number of heterozygotes. Our findings support the view that in selfing species a spatial mosaic of various locally abundant genotypes represents not randomly fixed combinations of alleles but the co-adapted gene complexes that were sieved by selection, while heterozygotes are characteristic for the transient phase of this process, when segregation and purging of maladaptive genotypes have not yet occurred.


Asunto(s)
Epistasis Genética , Hordeum/genética , Cruzamientos Genéticos , Tamización de Portadores Genéticos , Aptitud Genética , Variación Genética , Hordeum/anatomía & histología , Hordeum/crecimiento & desarrollo , Vigor Híbrido , Endogamia , Polinización , Autofecundación
8.
Heredity (Edinb) ; 105(4): 384-93, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19953120

RESUMEN

We present a study of fine-scale spatial genetic structure (SGS) and assess the impact of seed and pollen dispersal on the pattern of genetic diversity in the predominantly selfing Hordeum spontaneum. The study included (1) direct measurement of dispersal in a controlled environment, and (2) analyses of SGS and estimation of the ratio of pollen to seed flow in three natural populations sampled in linear transects at fixed increasing inter-plant distances. Analysis of SGS with 10 nuclear SSRs showed in all three populations a significant autocorrelation for the distance classes of 1 or 2 m and a negative linear relationship between kinship coefficients, calculated for pairs of individuals, and logarithm of geographical distance between members of the pairs. Major seed dispersal (95%) was found to be within 1.2 m from the mother plant. Pollen flow, estimated from the comparison of nuclear and chloroplast variation, was spatially limited as much as was seed dispersal, and tended to be overestimated when measured at spatial scales exceeding that of SGS. We conclude that combined effects of selfing, occasional outcrossing, localized seed dispersal and high plant density create an equilibrium between drift and gene flow in this species resulting in SGS at a very fine spatial scale.


Asunto(s)
Flujo Génico , Hordeum/genética , Hordeum/fisiología , Dispersión de Semillas/genética , Autofecundación/genética , Variación Genética , Genética de Población/métodos , Geografía , Repeticiones de Microsatélite/genética , Repeticiones de Microsatélite/fisiología , Polen/genética , Polen/fisiología , Polinización/genética , Dispersión de Semillas/fisiología , Semillas/genética , Semillas/fisiología
9.
Heredity (Edinb) ; 95(6): 466-75, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16189543

RESUMEN

Genetic differentiation in 20 hierarchically sampled populations of wild barley was analyzed with quantitative traits, allozymes and Random Amplified Polymorphic DNAs (RAPDs), and compared for three marker types at two hierarchical levels. Regional subdivision for both molecular markers was much lower than for quantitative traits. For both allozymes and RAPDs, most loci exhibited minor or no regional differentiation, and the relatively high overall estimates of the latter were due to several loci with exceptionally high regional differentiation. The allozyme- and RAPD-specific patterns of differentiation were concordant in general with one another, but not with quantitative trait differentiation. Divergent selection on quantitative traits inferred from very high regional Q(ST) was in full agreement with our previous results obtained from a test of local adaptation and multilevel selection analysis. In contrast, most variation in allozyme and RAPD variation was neutral, although several allozyme loci and RAPD markers were exceptional in their levels of regional differentiation. However, it is not possible to answer the question whether these exceptional loci are directly involved in the response to selection pressure or merely linked to the selected loci. The fact that Q(ST) and F(ST) did not differ at the population scale, that is, within regions, but differed at the regional scale, for which local adaptation has been previously shown, implies that comparison of the level of subdivision in quantitative traits, as compared with molecular markers, is indicative of adaptive population differentiation only when sampling is carried out at the appropriate scale.


Asunto(s)
Adaptación Biológica/genética , Variación Genética , Genética de Población , Hordeum/genética , Marcadores Genéticos , Isoenzimas/genética , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Técnica del ADN Polimorfo Amplificado Aleatorio , Selección Genética
10.
J Hered ; 94(4): 341-51, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12920106

RESUMEN

We examined the adaptive importance of allozyme variation in wild barley (Hordeum spontaneum). The test involved a nested sampling design with four population groups, each representing a different environment, and a comparison of observed allozyme variation with that expected under the assumption that allozymes are not neutral. Measurements of plant fitness in indigenous and alien environments in reciprocal introductions of seeds and seedlings in the four environments provided a guideline for the expected pattern of allozyme variation. The results showed considerable variation in both the degree of regional and population subdivision and the pattern of the subdivision among loci. The observed pattern of variation was ambiguous. Although two alleles exhibited a pattern of distribution that cannot be explained by genetic drift as a function of geographic distance, we failed to detect either a significant relationship between genetic distance and environmental similarity or any favored epistatic allele combinations across the four environments. Our results suggest that interpretation of allozyme variation in wild barley as adaptive and directly related to local environment still needs justification. Although we could not reject the null hypothesis, a proposed methodology seeking a concordance between observed and "adaptive" (i.e., expected under hypothesis that allozymes are not neutral) allozyme variation may prove to be effective in resolving the neutralist-selectionist debate when applied to other species.


Asunto(s)
Adaptación Biológica , Ambiente , Flujo Genético , Variación Genética , Hordeum/genética , Análisis por Conglomerados , Frecuencia de los Genes , Geografía , Isoenzimas/genética , Desequilibrio de Ligamiento
11.
J Biol Chem ; 276(2): 1220-5, 2001 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-11035017

RESUMEN

Among the prokaryotae, the nucleotide ppGpp is a second messenger of physiological stress and starvation. The target of ppGpp is RNA polymerase, where it putatively binds and alters the enzyme's activity. Previous data had implicated the beta-subunit of Escherichia coli RNA polymerase as containing a single ppGpp binding site. In this study, a photocross-linkable derivative of ppGpp, 6-thioguanosine-3',5'-(bis)pyrophosphate (6-thio-ppGpp), was used to localize the ppGpp binding site. In in vitro transcription assays, 6-thio-ppGpp inhibited transcription from the argT promoter identically to bona fide ppGpp. The thio group of 6-thio-ppGpp is directly photoactivatable and is thus a zero-length cross-linker. Cross-linking of RNA polymerase was directed primarily to the beta'-subunit and could be competed efficiently by native ppGpp but not by GTP or GDP. Cyanogen bromide digestion analysis of the cross-linked beta'-subunit was consistent with an extreme N-terminal cross-link. To assess allosteric consequences of ppGpp binding to RNA polymerase, high level trypsin resistance in the presence and absence of ppGpp was monitored. Trypsin digestion of RNA polymerase bound to ppGpp leads to protection of an N-terminal fragment of the beta'-subunit and a C-terminal fragment of the beta-subunit. We propose that the N terminus of beta' together with the C terminus of beta constitute a modular ppGpp binding site.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/enzimología , Guanosina Tetrafosfato/metabolismo , Transcripción Genética/efectos de los fármacos , Regulación Alostérica , Sitio Alostérico , Guanosina Difosfato/farmacología , Guanosina Tetrafosfato/análogos & derivados , Guanosina Tetrafosfato/síntesis química , Guanosina Tetrafosfato/farmacología , Cinética , Fragmentos de Péptidos/química , Regiones Promotoras Genéticas , Subunidades de Proteína , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tionucleótidos/síntesis química , Tionucleótidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...