Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2402527, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812415

RESUMEN

Spontaneous or nonspontaneous unidirectional fluid transport across multidimension can occur under specific structural designs and ambient elements for porous materials. While existing reviews have extensively summarized unidirectional fluid transport on surfaces, there is an absence of literature summarizing fluid's unidirectional transport across porous materials. This review introduces wetting phenomena observed on natural biological surfaces or porous structures. Subsequently, it offers an overview of diverse principles and potential applications in this field, emphasizing various physical and chemical structural designs (surface energy, capillary size, topographic curvature) and ambient elements (underwater, under oil, pressure, and solar energy). Applications encompass moisture-wicking fabric, sensors, skincare, fog collection, oil-water separation, electrochemistry, liquid-based gating, and solar evaporators. Additionally, significant principles and formulas from various studies are compelled to offer readers valuable references. Simultaneously, potential advantages and challenges are critically assessed in these applications and the perspectives are presented.

2.
Adv Mater ; : e2401264, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38545963

RESUMEN

Over the past few decades, significant progress in piezo-/triboelectric nanogenerators (PTEGs) has led to the development of cutting-edge wearable technologies. Nanofibers with good designability, controllable morphologies, large specific areas, and unique physicochemical properties provide a promising platform for PTEGs for various advanced applications. However, the further development of nanofiber-based PTEGs is limited by technical difficulties, ranging from materials design to device integration. Herein, the current developments in PTEGs based on electrospun nanofibers are systematically reviewed. This review begins with the mechanisms of PTEGs and the advantages of nanofibers and nanodevices, including high breathability, waterproofness, scalability, and thermal-moisture comfort. In terms of materials and structural design, novel electroactive nanofibers and structure assemblies based on 1D micro/nanostructures, 2D bionic structures, and 3D multilayered structures are discussed. Subsequently, nanofibrous PTEGs in applications such as energy harvesters, personalized medicine, personal protective equipment, and human-machine interactions are summarized. Nanofiber-based PTEGs still face many challenges such as energy efficiency, material durability, device stability, and device integration. Finally, the research gap between research and practical applications of PTEGs is discussed, and emerging trends are proposed, providing some ideas for the development of intelligent wearables.

3.
ACS Nano ; 18(13): 9365-9377, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38517349

RESUMEN

The emerging field of wearable electronics requires power sources that are flexible, lightweight, high-capacity, durable, and comfortable for daily use, which enables extensive use in electronic skins, self-powered sensing, and physiological health monitoring. In this work, we developed the core-shell and biocompatible Cs2InCl5(H2O)@PVDF-HFP nanofibers (CIC@HFP NFs) by one-step electrospinning assisted self-assembly method for triboelectric nanogenerators (TENGs). By adopting lead-free Cs2InCl5(H2O) as an inducer, CIC@HFP NFs exhibited ß-phase-enhanced and self-aligned nanocrystals within the uniaxial direction. The interface interaction was further investigated by experimental measurements and molecular dynamics, which revealed that the hydrogen bonds between Cs2InCl5(H2O) and PVDF-HFP induced automatically well-aligned dipoles and stabilized the ß-phase in the CIC@HFP NFs. The TENG fabricated using CIC@HFP NFs and nylon-6,6 NFs exhibited significant improvement in output voltage (681 V), output current (53.1 µA) and peak power density (6.94 W m-2), with the highest reported output performance among TENGs based on halide-perovskites. The energy harvesting and self-powered monitoring performance were further substantiated by human motions, showcasing its ability to charge capacitors and effectively operate electronics such as commercial LEDs, stopwatches, and calculators, demonstrating its promising application in biomechanical energy harvesting and self-powered sensing.

4.
Nanomicro Lett ; 16(1): 159, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512520

RESUMEN

Thermoregulatory textiles, leveraging high-emissivity structural materials, have arisen as a promising candidate for personal cooling management; however, their advancement has been hindered by the underperformed water moisture transportation capacity, which impacts on their thermophysiological comfort. Herein, we designed a wettability-gradient-induced-diode (WGID) membrane achieving by MXene-engineered electrospun technology, which could facilitate heat dissipation and moisture-wicking transportation. As a result, the obtained WGID membrane could obtain a cooling temperature of 1.5 °C in the "dry" state, and 7.1 °C in the "wet" state, which was ascribed to its high emissivity of 96.40% in the MIR range, superior thermal conductivity of 0.3349 W m-1 K-1 (based on radiation- and conduction-controlled mechanisms), and unidirectional moisture transportation property. The proposed design offers an approach for meticulously engineering electrospun membranes with enhanced heat dissipation and moisture transportation, thereby paving the way for developing more efficient and comfortable thermoregulatory textiles in a high-humidity microenvironment.

5.
Small ; 20(1): e2304705, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37653612

RESUMEN

Extreme environments can cause severe harm to human health, and even threaten life safety. Lightweight, breathable clothing with multi-protective functions would be of great application value. However, integrating multi-protective functions into nanofibers in a facile way remains a great challenge. Here, a one-step co-electrospinning-electrospray strategy is developed to fabricate a superhydrophobic multi-protective membrane (S-MPM). The water contact angle of S-MPM can reach up to 164.3°. More importantly, S-MPM can resist the skin temperature drop (11.2 °C) or increase (17.2 °C) caused by 0 °C cold or 70 °C hot compared with pure electrospun membrane. In the cold climate (-5 °C), the anti-icing time of the S-MPM is extended by 2.52 times, while the deicing time is only 1.45 s due to the great photothermal effect. In a fire disaster situation, the total heat release and peak heat release rate values of flame retarded S-MPM drop sharply by 24.2% and 69.3%, respectively. The S-MPM will serve as the last line of defense for the human body and has the potential to trigger a revolution in the practical application of next-generation functional clothing.


Asunto(s)
Ropa de Protección , Temperatura Cutánea , Humanos , Frío , Calor , Ambientes Extremos
6.
ACS Appl Mater Interfaces ; 16(1): 1899-1910, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38146149

RESUMEN

The cosmetics industry has a worrying impact on the environment, including the plastics used in products and packaging and environmentally unfriendly additives. In this study, we present an environment-friendly triode-like facial mask (TFM) that utilizes only green and degradable raw materials, nontoxic and harmless solvents, and electric energy to achieve distinct switchable directional water transport properties, avoids a wet storage environment, and reduces excessive packaging. The TFM demonstrates droplet stability when not in contact with the skin while facilitating rapid liquid transfer (15 µL) within durations of 2.8 s (dry skin) and 1.9 s (moist skin) upon contact. We elucidate the underlying mechanism behind this triode-like behavior, emphasizing the synergistic interaction of the wettability gradient, Gibbs pinning, and additional circumferential capillary force. Moreover, the TFM exhibits a reduction in the proportion of aging cells, decreasing from 44.33 to 13.75%, while simultaneously providing antibacterial and skin-beautifying effects. The TFM brings a novel experience while also holding the potential to reduce environmental pollution in the production, packaging, use, and recycling of cosmetics products.


Asunto(s)
Cosméticos , Máscaras , Piel , Humectabilidad , Reciclaje
7.
ACS Nano ; 18(1): 919-930, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38142426

RESUMEN

Long-term immobilization of joints can lead to disuse atrophy of the muscles in the joints. Oral nutrients are used clinically for rehabilitation and therapeutic purposes, but bioavailability and targeting are limited. Here, we report tea polyphenols (dietary polyphenols), sustained-release nanofilms that release tea polyphenols through slow local degradation of core-shell nanofibers in muscles. This dietary polyphenol does not require gastrointestinal consumption and multiple doses and can directly remove inflammatory factors and superoxide generated in muscle tissue during joint fixation. The quality of muscles is increased by 30%, and muscle movement function is effectively improved. Although nanofibers need to be implanted into muscles, they can improve bacterial infections after joint surgery. To investigate the biological mechanism of this core-shell nanomembrane prevention, we conducted further transcriptomic studies on muscle, confirming that in addition to achieving antioxidation and anti-inflammation by inhibiting TNF-α and NF-κB signaling pathways, tea polyphenol core-shell nanofibers can also promote muscle formation by activating the p-Akt signaling pathway.


Asunto(s)
Nanofibras , Humanos , Preparaciones de Acción Retardada , , Polifenoles/farmacología , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/prevención & control
8.
Adv Mater ; : e2306435, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37607262

RESUMEN

Developing an intelligent wearable system is of great significance to human health management. An ideal health-monitoring patch should possess key characteristics such as high air permeability, moisture-wicking function, high sensitivity, and a comfortable user experience. However, such a patch that encompasses all these functions is rarely reported. Herein, an intelligent bionic skin patch for health management is developed by integrating bionic structures, nano-welding technology, flexible circuit design, multifunctional sensing functions, and big data analysis using advanced electrospinning technology. By controlling the preparation of nanofibers and constructing bionic secondary structures, the resulting nanofiber membrane closely resembles human skin, exhibiting excellent air/moisture permeability, and one-side sweat-wicking properties. Additionally, the bionic patch is endowed with a high-precision signal acquisition capabilities for sweat metabolites, including glucose, lactic acid, and pH; skin temperature, skin impedance, and electromyographic signals can be precisely measured through the in situ sensing electrodes and flexible circuit design. The achieved intelligent bionic skin patch holds great potential for applications in health management systems and rehabilitation engineering management. The design of the smart bionic patch not only provides high practical value for health management but also has great theoretical value for the development of the new generation of wearable electronic devices.

9.
Mater Horiz ; 10(10): 4407-4414, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37475666

RESUMEN

Maintaining a reasonably stable body temperature is vital for a variety of human activities in an energy-conservation strategy. However, it is well-known that metal-like materials, utilized as radiative reflectors, severely restrict wearability properties, thus posing a tremendous obstacle in personal thermal management (PTM) systems. Herein, we designed a supramolecular-enhanced membrane (SupraEM) acting as a mid-infrared (MIR) reflector to solve the conundrum of warmth-wearability performance. Benefiting from the low-emissivity of decorating titanium carbide (MXene) and the formation of supramolecular interactions, the prototyped polyvinylidene difluoride&Polyurethane/MXene (PVDF&PU/MXene) SupraEM demonstrated a low-emissivity of 0.246 and reinforced mechanical performance, resulting in an evenly higher temperature retention of 8 °C in comparison to the pristine hybrid membrane counterpart, and compared with a commercial textile that is three times thicker, it also exhibited higher temperature retention of 6.2 °C. This work demonstrates the wearability of decorated MXene without sacrificing its temperature retention, overcoming a major bottleneck that has plagued MXene as a thermoregulatory material for PTM systems.

10.
Nat Commun ; 14(1): 4128, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438400

RESUMEN

Developing an effective and sustainable method for separating and purifying oily wastewater is a significant challenge. Conventional separation membrane and sponge systems are limited in their long-term usage due to weak antifouling abilities and poor processing capacity for systems with multiple oils. In this study, we present a dual-bionic superwetting gears overflow system with liquid steering abilities, which enables the separation of oil-in-water emulsions into pure phases. This is achieved through the synergistic effect of surface superwettability and complementary topological structures. By applying the surface energy matching principle, water and oil in the mixture rapidly and continuously spread on preferential gear surfaces, forming distinct liquid films that repel each other. The topological structures of the gears facilitate the overflow and rapid transfer of the liquid films, resulting in a high separation flux with the assistance of rotational motion. Importantly, this separation model mitigates the decrease in separation flux caused by fouling and maintains a consistently high separation efficiency for multiple oils with varying densities and surface tensions.

12.
ACS Nano ; 17(7): 7035-7046, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36994837

RESUMEN

To develop intelligent wearable protection systems is of great significance to human health engineering. An ideal intelligent air filtration system should possess reliable filtration efficiency, low pressure drop, healthcare monitoring function, and man-machine interactive capability. However, no existing intelligent protection system covers all these essential aspects. Herein, we developed an intelligent wearable filtration system (IWFS) via advanced nanotechnology and machine learning. Based on the triboelectric mechanism, the fabricated IWFS exhibits a long-lasting high particle filtration efficiency and bacteria protection efficiency of 99% and 100%, respectively, with a low-pressure drop of 5.8 mmH2O. Correspondingly, the charge accumulation of the optimized IWFS (87 nC) increased to 3.5 times that of the pristine nanomesh, providing a significant enhancement of the particle filtration efficiency. Theoretical principles, including the enhancement of the ß-phase and the lower surface potential of the modified nanomesh, were quantitatively investigated by molecular dynamics simulation, band theory, and Kelvin probe force microscopy. Furthermore, we endowed the IWFS with a healthcare monitoring function and man-machine interactive capability through machine learning and wireless transmission technology. Crucial physiological signals of people, including breath, cough, and speaking signals, were detected and classified, with a high recognition rate of 92%; the fabricated IWFS can collect healthcare data and transmit voice commands in real time without hindrance by portable electronic devices. The achieved IWFS not only has practical significance for human health management but also has great theoretical value for advanced wearable systems.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Nanotecnología , Aprendizaje Automático
13.
Chem Commun (Camb) ; 58(80): 11201-11219, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36125075

RESUMEN

In the past few years, bioinspired eco-friendly superhydrophobic materials (EFSMs) have made great breakthroughs, especially in the fields of environment, energy and biology, which have made remarkable contributions to the sustainable development of the natural environment. However, some potential challenges still exist, which urgently need to be systematically summarized to guide the future development of this field. Herein, in this review, initially, we discuss the five typical superhydrophobic models, namely, the Wenzel, Cassie, Wenzel-Cassie, "lotus", and "gecko" models. Then, the existence of superhydrophobic creatures in nature and artificial EFSMs are summarized. Then, we focus on the applications of EFSMs in the fields of environment (self-cleaning, wastewater purification, and membrane distillation), energy (solar evaporation, heat accumulation, and batteries), and biology (biosensors, biomedicine, antibacterial, and food packaging). Finally, the challenges and developments of eco-friendly superhydrophobic materials are highlighted.


Asunto(s)
Materiales Biomiméticos , Antibacterianos , Biología , Materiales Biomiméticos/química , Interacciones Hidrofóbicas e Hidrofílicas , Propiedades de Superficie
14.
ACS Appl Mater Interfaces ; 14(34): 39610-39621, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35980757

RESUMEN

Electrospinning is a feasible technology to fabricate nanomaterials. However, the preparation of nanomaterials with controllable structures of microbeads and fine nanofibers is still a challenge, which hinders widespread applications of electrospun products. Herein, inspired by the micro/nanostructures of lotus leaves, we constructed a structured electrospun membrane with excellent comprehensive properties. First, micro/nanostructures of membranes with adjustable microbeads and nanofibers were fabricated on a large scale and quantitatively analyzed based on the controlling preparation, and their performances were systematically evaluated. The deformation of diverse polymeric solution droplets in the electrospinning process under varying electric fields was then simulated by molecular dynamic simulation. Finally, novel fibrous membranes with structured sublayers and controllable morphologies were designed, prepared, and compared. The achieved structured membranes demonstrate a high water vapor transmission rate (WVTR) > 17.5 kg/(m2 day), a good air permeability (AP) > 5 mL/s, a high water contact angle (WCA) up to 151°, and a high hydrostatic pressure of 623 mbar. The disclosed science and technology in this article can provide a feasible method to not only adjust micro/nanostructure fibers but also to design secondary multilayer structures. This research is believed to assist in promoting the diversified development of advanced fibrous membranes and intelligent protection.

15.
Adv Mater ; 34(17): e2107938, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34969155

RESUMEN

Electrospinning is a significant micro/nanofiber processing technology and has been rapidly developing in the past 2 decades. It has several applications, including advanced sensing, intelligent manufacturing, and high-efficiency catalysis. Here, multifunctional protective membranes fabricated via electrospinning in terms of novel material design, construction of novel structures, and various protection requirements in different environments are reviewed. To achieve excellent comprehensive properties, such as, high water vapor transmission, high hydrostatic pressure, optimal mechanical property, and air permeability, combinations of novel materials containing nondegradable/degradable materials and functional structures inspired by nature have been investigated for decades. Currently, research is mainly focused on conventional protective membranes with multifunctional properties, such as, anti-UV, antibacterial, and electromagnetic-shielding functions. However, important aspects, such as, the properties of electrospun monofilaments, development of "green electrospinning solutions" with high solid content, and approaches for enhancing adhesion between hydrophilic and hydrophobic layers are not considered. Based on this systematic review, the development of electrospinning for protective membranes is discussed, the existing gaps in research are discussed, and solutions for the development of technology are proposed. This review will assist in promoting the diversified development of protective membranes and is of great significance for fabricating advanced materials for intelligent protection.


Asunto(s)
Nanofibras , Antibacterianos , Interacciones Hidrofóbicas e Hidrofílicas , Membranas Artificiales , Nanofibras/química
16.
Langmuir ; 36(3): 667-681, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31940205

RESUMEN

Developments in bioinspired superwetting materials have triggered technological revolutions in many disciplines. One representative area is liquid directional transport dominated by interface properties, which has experienced rapid progress recently. To improve the controllability, scientists try to use the external field, such as light, electricity, thermal, and so on, to assist or achieve controllable smart, responsive liquid directional transport. However, there are still some intractable problems and challenges behind prosperity. Here, we summarize the relevant basic theory of surface wettability and the processes of the development of bioinspired superwetting materials. We discuss the different essential mechanisms of liquid directional transport. Furthermore, smart external field-controlled fluid directional transport is the primary focus of this feature article. We briefly put forward our views on some outstanding problems, existing challenges, and trends in this field.

17.
Proc Natl Acad Sci U S A ; 117(4): 1890-1894, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31937663

RESUMEN

The rapid removal of rain droplets at the leaf apex is critical for leaves to avoid damage under rainfall conditions, but the general water drainage principle remains unclear. We demonstrate that the apex structure enhances water drainage on the leaf by employing a curvature-controlled mechanism that is based on shaping a balance between reduced capillarity and enhanced gravity components. The leaf apex shape changes from round to triangle to acuminate, and the leaf surface changes from flat to bent, resulting in the increase of the water drainage rate, high-dripping frequencies, and the reduction of retention volumes. For wet tropical plants, such as Alocasia macrorrhiza, Gaussian curvature reconfiguration at the drip tip leads to the capillarity transition from resistance to actuation, further enhancing water drainage to the largest degree possible. The phenomenon is distinct from the widely researched liquid motion control mechanisms, and it offers a specific parametric approach that can be applied to achieve the desired fluidic behavior in a well-controlled way.


Asunto(s)
Alocasia/anatomía & histología , Alocasia/fisiología , Drenaje , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Lluvia , Agua/fisiología
18.
ACS Nano ; 13(11): 13100-13108, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31702896

RESUMEN

Effective droplet emission is of fundamental importance for practical application, such as agricultural sprays to painting, atomization, emulsification, and catalytic action. Highly viscous liquids are commonly used, such as printing inks, which hinder the ejection at the nozzle. A big challenge faced by people is how to obtain stable and controllable liquid droplets in a wide range of viscosities. Inspired by the rotation shaking of droplets on fiber clusters and the rotary spraying disk technique, here, we demonstrate uniform microdroplet (1-2000 mPa·s) generation in a tip-guided way that replaces the commonly confined nozzle by a double-layer spinning "sandwich" multitip disk (SSMD). A surface energy gradient induced by the margin structure of the alternating gas wedge and solid tip guides liquid to move along the solid tip, which is ejected at the end of the tip, forming a ring of droplet clusters. SSMD improves the effective droplet-jet process to 7/10 of the whole drainage process and enhances the efficiency with a production drop volume of ∼3.19 × 107 µL/h and production droplet numbers of ∼3.3 × 104 per second. Droplets can be fine-tuned between 0.1 and 1.0 mm via the tip structure, liquid property, and spinning angular velocity with a narrow size distribution. This facile tip-guided design could inspire the possibility of energy-efficient droplet production techniques in various fluid applications, such as spraying and printing. It may further improve other fluid systems that serve as a crucial component for high-speed droplet manipulation, liquid transport, and water vapor capturing.

19.
World J Clin Cases ; 7(13): 1703-1710, 2019 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-31367630

RESUMEN

BACKGROUND: Synchronous multiple primary cancers (SMPC) mean two or more malignant tumors occurring simultaneously and with different origins no matter what types they are or where they are located. The carcinogenesis of SMPC often involves variations of some specific genes. However, the correlation between CDH1 mutations and synchronous multiple primary gastrointestinal cancers is largely unknown. CASE SUMMARY: A 62-year-old woman had sustained abdominal pain for one week and visited our hospital. Gastrointestinal endoscopy revealed multiple small polypoid lesions in both the stomach and colorectum. Computed tomography and laboratory results were within normal limits. Pathological evaluation confirmed signet ring cell carcinoma without obvious metastatic evidence. Malignant cells showed negativity for E-cadherin and positivity for ß-catenin in the cytoplasm and nucleus. DNA sequencing performed on paraffin-embedded tissue revealed two exactly coincident alterations in CDH1, C.57T>G and C.1418A>T. CONCLUSION: This case suggests that the combination of CDH1 mutations and WNT/ß-catenin signaling activation contributes to the carcinogenesis of gastrointestinal SMPC.

20.
ACS Cent Sci ; 4(9): 1102-1112, 2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-30276243

RESUMEN

Bioinspired designs of superhydrophobic and superhydrophilic materials have been an important and fascinating area of research in recent years for their extensive potential application prospects from industry to our daily life. Despite extensive progress, existing research achievements are far from real applications. From biomimetic performance to service life, the related research has faced serious problems at present. A timely outlook is therefore necessary to summarize the existing research, to discuss the challenges faced, and to propose constructive advice for the ongoing scientific trend. Here, we comb the process of development of bioinspired superhydrophobic and superhydrophilic materials at first. Then, we also describe how to design artificial superhydrophobic and superhydrophilic materials. Furthermore, current challenges faced by bioinspired designs of superhydrophobic and superhydrophilic materials are pointed out, separately, and the possible solutions are discussed. Emerging applications in this field are also briefly considered. Finally, the development trend within this field is highlighted to lead future research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA