Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 178: 108751, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936078

RESUMEN

BACKGROUND: Automatic abnormalities detection based on Electrocardiogram (ECG) contributes greatly to early prevention, computer aided diagnosis, and dynamic analysis of cardiovascular diseases. In order to achieve cardiologist-level performance, deep neural networks have been widely utilized to extract abstract feature representations. However, the mechanical stacking of numerous computationally intensive operations makes traditional deep neural networks suffer from inadequate learning, poor interpretability, and high complexity. METHOD: To address these limitations, a clinical knowledge-based ECG abnormalities detection model using dual-view CNN-Transformer and external attention mechanism is proposed by mimicking the diagnosis of the clinicians. Considering the clinical knowledge that both the detailed waveform changes within a single heartbeat and the global changes throughout the entire recording have complementary roles in abnormalities detection, we presented a dual-view CNN-Transformer to extract and fuse spatial-temporal features from different views. In addition, the locations of the ECG where abnormalities occur provide more information than other areas. Therefore, two external attention mechanisms are designed and added to the corresponding views to help the network learn efficiently. RESULTS: Experiment results on the 9-class dataset show that the proposed model achieves an average F1-score of 0.854±0.01 with a higher interpretability and a lower complexity, outperforming the state-of-the-art model. CONCLUSIONS: Combining all these excellent features, this study provides a credible solution for automatic ECG abnormalities detection.


Asunto(s)
Electrocardiografía , Redes Neurales de la Computación , Humanos , Electrocardiografía/métodos , Procesamiento de Señales Asistido por Computador , Diagnóstico por Computador/métodos , Aprendizaje Profundo
2.
Sci Data ; 11(1): 248, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413602

RESUMEN

This report presents the Harespod dataset, an open dataset for high altitude hypoxia research, which includes respiration and SpO2 data. The dataset was collected from 15 college students aged 23-31 in a hypobaric oxygen chamber, during simulated altitude changes and induced hypoxia. Real-time physiological data, such as oxygen saturation waveforms, oxygen saturation, respiratory waveforms, heart rate, and pulse rate, were obtained at 100 Hz. Approximately 12 hours of valid data were collected from all participants. Researchers can easily identify the altitude corresponding to physiological signals based on their inherent patterns. Time markers were also recorded during altitude changes to facilitate realistic annotation of physiological signals and analysis of time-difference-of-arrival between various physiological signals for the same altitude change event. In high altitude scenarios, this dataset can be used to enhance the detection of human hypoxia states, predict respiratory waveforms, and develop related hardware devices. It will serve as a valuable and standardized resource for researchers in the field of high altitude hypoxia research, enabling comprehensive analysis and comparison.


Asunto(s)
Mal de Altura , Saturación de Oxígeno , Humanos , Altitud , Hipoxia , Respiración , Adulto Joven , Adulto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...