Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 27(34): 42221-42229, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32037493

RESUMEN

Globally, odorant incidents are occurring at an increasing frequency, magnitude, and duration under the dual influences of eutrophication and climate change. However, the contribution of multiple ecotypes to odorant production in the complicated and dynamic lake ecosystems remains unclear. In this study, the odorants and environmental conditions in algae-dominated zones (ADZs) and macrophyte-dominated zones (MDZs) in Lake Taihu were identified and characterized. Results showed that the ADZs were characterized by an abundance of pigments and nutrients and low DO levels, while the MDZs were featured as high TOC/TN ratios and high DO levels. Most odorants in ADZs and several in MDZs exceeded the odorant threshold content. The dominant odorants were dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS), ß-ionone and ß-cyclocitral in ADZs, which were associated with the accumulation and decomposition of algal detritus. For MDZs, the dominant odorants were 2-methylisoborneol (2-MIB) and geosmin, which were at least partially attributed to the massive addition of bait in a traditional aquaculture area. In addition, the odorant concentration in the water of ADZs was approximately 3 to 21 times higher than that in MDZs, while in the benthic sediment, the odorant concentration in ADZs was approximately 2 to 3 orders of magnitude higher than in MDZs. This study highlights the production and accumulation of nuisance odorants in the benthic sediment of ADZs, indicating a risk of diffusion from the sediment to the water column. This was supported by the correlation of odorants in the water column with that in the sediment. The results of this study will be helpful for the management of different ecotypes suffering from nuisance odorants problems.


Asunto(s)
Lagos , Contaminantes Químicos del Agua , China , Ecosistema , Ecotipo , Monitoreo del Ambiente , Eutrofización , Sedimentos Geológicos , Odorantes , Contaminantes Químicos del Agua/análisis
2.
Environ Pollut ; 256: 113453, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31672349

RESUMEN

Eutrophic freshwater lake ecosystems are receiving increasing public attention due to a global increase in large-scale harmful cyanobacterial blooms in surface waters. However, the contribution of phytodetritus accumulation in benthic sediments post-bloom remains unclear. In this study, field investigations were performed using microsensors to evaluate benthic phytodetritus mats by measuring TOC/TN ratios, pigments, biodegradable compounds and odorants as descriptive parameters. Results show that the massive amount of phytodetritus trapped by aquatic plants gradually evolved into benthic cyanobacterial detritus mats, which were characterized as anoxic, reductive and low pH. It was confirmed that the occurrence of odorants is more serious in the detritus mats due to decay and decomposition of the accumulated phytodetritus. The mean odorant content in the vegetated zones was 3-52 times higher than that in the unvegetated zones. The dominant odorants were dimethyl trisulfide (DMTS), ß-ionone and ß-cyclocitral, with mean contents of 52.38 ng·(g·dw)-1, 162.20 ng·(g·dw)-1 and 307.51 ng·(g·dw)-1, respectively, in the sediment. In addition, odorant production appears to be associated with the distribution of biodegradable compounds in the sediment. This is supported by the marked correlation observed between biodegradable compounds and odorants. Multiple regression analysis showed that biodegradable compounds can be used as indicators to predict odorant content in the sediment. It is noteworthy that the odorant trend in the water column and sediment is symmetrical, indicating a risk of diffusion from the sediment to the water column. This study helps to clarifying the contributions of benthic cyanobacterial detritus mats to odorant production in shallow eutrophic lakes. The information provided herein may also be useful for future management of aquatic ecosystems.


Asunto(s)
Cianobacterias/fisiología , Monitoreo del Ambiente , Odorantes , Ecosistema , Eutrofización , Sedimentos Geológicos/microbiología , Lagos/química , Sulfuros
3.
Huan Jing Ke Xue ; 40(10): 4505-4512, 2019 Oct 08.
Artículo en Chino | MEDLINE | ID: mdl-31854818

RESUMEN

In shallow eutrophic lakes, benthic bioclastic deposits accumulate abundant organic carbon derived from macrophyte detritus. Taking the typical macrophyte-dominated Xukou Bay as the study area, field investigations were performed using sediment cores to evaluate benthic phytodetritus accumulation. Specifically, nutrient contents, TOC/TN ratios, pigmentation, and biodegradable compounds were measured as descriptive parameters. The results show that the benthic bioclastic deposit had accumulated abundant pigments, nutrients, and biodegradable compounds derived from macrophytes detritus. These were mainly localized in the top 15 cm of sediments. Nitrogen loading in the sediments was significantly higher than phosphorous loading, with a distinct spatial difference; the total nitrogen content ranged from 127.2-2092.8 mg·kg-1 and total phosphorous content ranged from 222.1-528.4 mg·kg-1. Moreover, nitrogen loading (1033.6 mg·kg-1) in the vegetated zones were higher than in the unvegetated zones (325.2 mg·kg-1). In addition, carbohydrate (3.7 mg·g-1) was the dominant component of sedimentary bioclastic material, with lipids (2.8 mg·g-1) being the second most abundant of the biodegradable compounds. The major sources of nutrients and biodegradable compounds in the sediment were massive aggregates of macrophyte detritus. The pigment, nutrient, and biodegradable compound contents in the vegetated zones were significantly higher than in unvegetated zones (P<0.01). The benthic eutrophic state showed a trend from mesotrophic to eutrophic in Xukou Bay, which should be given more attention in the future management of freshwater lake ecosystems.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Lagos , China , Eutrofización , Sedimentos Geológicos , Nitrógeno , Fósforo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...