Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 153: 399-410, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36055609

RESUMEN

Derived from the respiratory tracheae, bush-crickets' acoustic tracheae (or ear canals) are hollow tubes evolved to transmit sounds from the external environment to the interior ear. Due to the location of the ears in the forelegs, the acoustic trachea serves as a structural element that can withstand large stresses during locomotion. In this study, we report a new Atomic Force Microscopy Force Spectroscopy (AFM-FS) approach to quantify the mechanics of taenidia in the bush-cricket Mecopoda elongata. Mechanical properties were examined over the longitudinal axis of hydrated taenidia, by indenting single fibres using precision hyperbolic tips. Analysis of the force-displacement (F-d) extension curves at low strains using the Hertzian contact model showed an Elastic modulus distribution between 13.9 MPa to 26.5 GPa, with a mean of 5.2 ± 7 GPa and median 1.03 GPa. Although chitin is the primary component of stiffness, variation of elasticity in the nanoscale suggests that resilin significantly affects the mechanical properties of single taenidia fibres (38% of total data). For indentations up to 400 nm, an intricate chitin-resilin response was observed, suggesting structural optimization between compliance and rigidity. Finite-element analysis on composite materials demonstrated that the Elastic modulus is sensitive to the percentage of resilin and chitin content, their location and structural configuration. Based on our results, we propose that the distinct moduli of taenidia fibres indicate sophisticated evolution with elasticity playing a key role in optimization. STATEMENT OF SIGNIFICANCE: In crickets and bush-crickets, the foreleg tracheae have evolved into acoustic canals, which transport sound to the ears located on the tibia of each leg. Tracheae are held open by spiral cuticular micro-fibres called taenidia, which are the primary elements of mechanical reinforcement. We developed an AFM-based method to indent individual taenidia at the nanometre level, to quantify local mechanical properties of the interior acoustic canal of the bush-cricket Mecopoda elongata, a model species in hearing research. Taenidia fibres were immobilized on a hard substrate and the indenter directly approached the epicuticle surface. This is the first characterization of the nano-structure of unfixed tracheal taenidia, and should pave the way for further in vivo mechanical investigations of auditory structures.


Asunto(s)
Acústica , Tráquea , Microscopía de Fuerza Atómica/métodos , Tráquea/fisiología , Módulo de Elasticidad , Elasticidad , Quitina
2.
Cell Commun Signal ; 18(1): 79, 2020 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32450899

RESUMEN

BACKGROUND: Tubulointerstitial fibrosis represents the key underlying pathology of Chronic Kidney Disease (CKD), yet treatment options remain limited. In this study, we investigated the role of connexin43 (Cx43) hemichannel-mediated adenosine triphosphate (ATP) release in purinergic-mediated disassembly of adherens and tight junction complexes in early tubular injury. METHODS: Human primary proximal tubule epithelial cells (hPTECs) and clonal tubular epithelial cells (HK2) were treated with Transforming Growth Factor Beta1 (TGF-ß1) ± apyrase, or ATPγS for 48 h. For inhibitor studies, cells were co-incubated with Cx43 mimetic Peptide 5, or purinergic receptor antagonists Suramin, A438079 or A804598. Immunoblotting, single-cell force spectroscopy and trans-epithelial electrical resistance assessed protein expression, cell-cell adhesion and paracellular permeability. Carboxyfluorescein uptake and biosensing measured hemichannel activity and real-time ATP release, whilst a heterozygous Cx43+/- mouse model with unilateral ureteral obstruction (UUO) assessed the role of Cx43 in vivo. RESULTS: Immunohistochemistry of biopsy material from patients with diabetic nephropathy confirmed increased expression of purinergic receptor P2X7. TGF-ß1 increased Cx43 mediated hemichannel activity and ATP release in hPTECs and HK2 cells. The cytokine reduced maximum unbinding forces and reduced cell-cell adhesion, which translated to increased paracellular permeability. Changes were reversed when cells were co-incubated with either Peptide 5 or P2-purinoceptor inhibitors. Cx43+/- mice did not exhibit protein changes associated with early tubular injury in a UUO model of fibrosis. CONCLUSION: Data suggest that Cx43 mediated ATP release represents an initial trigger in early tubular injury via its actions on the adherens and tight junction complex. Since Cx43 is highly expressed in nephropathy, it represents a novel target for intervention of tubulointerstitial fibrosis in CKD. Video Abstract In proximal tubular epithelial cells (PTECs), tight junction proteins, including zona occuludens-1 (ZO-1), contribute to epithelial integrity, whilst the adherens junction protein epithelial (E)-cadherin (ECAD) maintains cell-cell coupling, facilitating connexin 43 (Cx43) gap junction-mediated intercellular communication (GJIC) and the direct transfer of small molecules and ions between cells. In disease, such as diabetic nephropathy, the pro-fibrotic cytokine transforming growth factor beta1 (TGF-ß1) binds to its receptor and recruits SMAD2/3 signalling ahead of changes in gene transcription and up-regulation of Cx43-mediated hemichannels (HC). Uncoupled hemichannels permit the release of adenosine triphosphate (ATP) in to the extracellular space (↑[ATP]e), where ATP binds to the P2X7 purinoreceptor and activates the nucleotide-binding domain and leucine-rich repeat containing (NLR) protein-3 (NLRP3) inflammasome. Inflammation results in epithelial-to-mesenchymal transition (EMT), fibrosis and tubular injury. A major consequence is further loss of ECAD and reduced stickiness between cells, which can be functionally measured as a decrease in the maximum unbinding force needed to uncouple two adherent cells (Fmax). Loss of ECAD feeds forward to further lessen cell-cell coupling exacerbating the switch from GJIC to HC-mediated release of ATP. Reduction in ZO-1 impedes tight junction effectiveness and decreases trans-epithelial resistance (↓TER), resulting in increased paracellular permeability.


Asunto(s)
Adenosina Trifosfato/metabolismo , Conexina 43/fisiología , Túbulos Renales , Insuficiencia Renal Crónica/metabolismo , Animales , Adhesión Celular , Línea Celular , Humanos , Túbulos Renales/metabolismo , Túbulos Renales/patología , Ratones , Persona de Mediana Edad
3.
Methods Mol Biol ; 2067: 189-201, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31701454

RESUMEN

The ability of individual cells to synchronize activity is a basic feature of efficient and appropriate tissue function. Central to this is the physicochemical binding between cells through multiprotein complexes that functionally mediate adhesion. Importantly, the direct connection of physical properties and intercellular signaling is of great importance to certain pathologies including diabetes. Atomic force microscopy (AFM) single-cell force spectroscopy (SCFS) is a high-resolution technique that provides a statistically reliable measurement of the minute forces involved in cell tethering and membrane dynamics. Detection of altered nanoscale forces underlying the loss of adhesion in early tubular injury is pivotal for the development of novel therapeutic strategies for diabetic nephropathy. Here we describe the step-by-step use of an integrated AFM-SCFS system designed to measure functional force-displacement in separating renal tubular epithelial cells. Parameters such as unbinding forces, detachment energy, and distance to complete separation can be obtained from force-displacement (F-d) curves and are critical in assessing how physical changes of cellular adhesion contribute to cell contact, coupling, and communication in the diabetic kidney.


Asunto(s)
Nefropatías Diabéticas/patología , Células Epiteliales/patología , Túbulos Renales/patología , Microscopía de Fuerza Atómica/métodos , Análisis de la Célula Individual/métodos , Adhesión Celular/fisiología , Comunicación Celular/fisiología , Línea Celular , Células Epiteliales/ultraestructura , Humanos , Túbulos Renales/citología , Microscopía de Fuerza Atómica/instrumentación , Análisis de la Célula Individual/instrumentación , Análisis Espectral/instrumentación , Análisis Espectral/métodos
4.
Front Cell Dev Biol ; 8: 621016, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33537312

RESUMEN

Vascular adhesion protein-1 (VAP-1) is an inflammation-inducible adhesion molecule and a primary amine oxidase involved in immune cell trafficking. Leukocyte extravasation into tissues is mediated by adhesion molecules expressed on endothelial cells and pericytes. Pericytes play a major role in the angiogenesis and vascularization of cycling endometrium. However, the functional properties of pericytes in the human endometrium are not known. Here we show that pericytes surrounding the spiral arterioles in midluteal human endometrium constitutively express VAP-1. We first characterize these pericytes and demonstrate that knockdown of VAP-1 perturbed their biophysical properties and compromised their contractile, migratory, adhesive and clonogenic capacities. Furthermore, we show that loss of VAP-1 disrupts pericyte-uterine natural killer cell interactions in vitro. Taken together, the data not only reveal that endometrial pericytes represent a cell population with distinct biophysical and functional properties but also suggest a pivotal role for VAP-1 in regulating the recruitment of innate immune cells in human endometrium. We posit that VAP-1 could serve as a potential biomarker for pregnancy pathologies caused by a compromised perivascular environment prior to conception.

5.
Nanomedicine ; 22: 102108, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31655201

RESUMEN

Loss of epithelial (E)-cadherin mediated cell-cell adhesion impairs gap junction formation and facilitates hemichannel-mediated ATP release in the diabetic kidney. Linked to inflammation and fibrosis, we hypothesized that local increases in inter-cellular ATP activate P2X7 receptors on neighboring epithelial cells of the proximal tubule, to further impair cell-cell adhesion and ultimately exacerbate tubular injury. Immunoblotting confirmed changes in E-cadherin expression in human kidney cells treated with non-hydrolysable ATPγS ± the P2X7 antagonist, A438079. Atomic force microscopy based single-cell force spectroscopy quantified maximum unbinding force, tether rupture events, and work of detachment. Confocal microscopy assessed cytoskeletal reorganization. Our studies confirmed that ATPγS downregulated E-cadherin expression in proximal kidney cells, loss of which was paralleled by a reduction in intercellular ligation forces, decreased tether rupture events and cytoskeletal remodeling. Co-incubation with A438079 restored loss of adhesion, suggesting that elevated extracellular ATP mediates tubular injury through P2X7 induced loss of E-cadherin mediated adhesion.


Asunto(s)
Células Epiteliales/citología , Células Epiteliales/metabolismo , Túbulos Renales Proximales/citología , Receptores Purinérgicos P2X7/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Cadherinas/metabolismo , Adhesión Celular/efectos de los fármacos , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Humanos
6.
Nanomedicine ; 12(4): 1013-1021, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26733260

RESUMEN

Tubulointerstitial fibrosis represents the major underlying pathology of diabetic nephropathy where loss of cell-to-cell adhesion is a critical step. To date, research has predominantly focussed on the loss of cell surface molecular binding events that include altered protein ligation. In the current study, atomic force microscopy single cell force spectroscopy (AFM-SCFS) was used to quantify changes in cellular stiffness and cell adhesion in TGF-ß1 treated kidney cells of the human proximal tubule (HK2). AFM indentation of TGF-ß1 treated HK2 cells showed a significant increase (42%) in the elastic modulus (stiffness) compared to control. Fluorescence microscopy confirmed that increased cell stiffness is accompanied by reorganization of the cytoskeleton. The corresponding changes in stiffness, due to F-actin rearrangement, affected the work of detachment by changing the separation distance between two adherent cells. Overall, our novel data quantitatively demonstrate a correlation between cellular elasticity, adhesion and early morphologic/phenotypic changes associated with tubular injury. FROM THE CLINICAL EDITOR: Diabetes affects many patients worldwide. One of the long term problems is diabetic nephropathy. Here, the authors utilized atomic force microscopy single cell force spectroscopy (AFM- SCFS) to study cellular stiffness and cell adhesion after TGF1 treatment in human proximal tubule kidney cells. The findings would help further understand the overall disease mechanism in diabetic patients.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Nefropatías Diabéticas/patología , Fibrosis/patología , Factor de Crecimiento Transformador beta1/administración & dosificación , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patología , Citoesqueleto de Actina/ultraestructura , Actinas/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Elasticidad , Fibrosis/tratamiento farmacológico , Humanos , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Microscopía de Fuerza Atómica , Análisis de la Célula Individual , Estrés Mecánico , Factor de Crecimiento Transformador beta1/metabolismo
7.
FEBS Lett ; 588(7): 1178-83, 2014 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-24613916

RESUMEN

In this study we use a novel approach to quantitatively investigate mechanical and interfacial properties of clonal ß-cells using AFM-Single Cell Force Spectroscopy (SCFS). MIN6 cells were incubated for 48 h with 0.5 mM Ca(2+) ± the calcimimetic R568 (1 µM). AFM-SCFS adhesion and indentation experiments were performed by using modified tipless cantilevers. Hertz contact model was applied to analyse force-displacement (F-d) curves for determining elastic or Young's modulus (E). Our results show CaSR-evoked increases in cell-to-cell adhesion parameters and E modulus of single cells, demonstrating that cytomechanics have profound effects on cell adhesion characterization.


Asunto(s)
Compuestos de Anilina/farmacología , Células Secretoras de Insulina/fisiología , Animales , Fenómenos Biomecánicos , Adhesión Celular , Línea Celular , Módulo de Elasticidad/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Microscopía de Fuerza Atómica , Fenetilaminas , Propilaminas , Receptores Sensibles al Calcio/agonistas
8.
PLoS One ; 8(8): e71819, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24009666

RESUMEN

Ketamine, a mild hallucinogenic class C drug, is the fastest growing 'party drug' used by 16-24 year olds in the UK. As the recreational use of Ketamine increases we are beginning to see the signs of major renal and bladder complications. To date however, we know nothing of a role for Ketamine in modulating both structure and function of the human renal proximal tubule. In the current study we have used an established model cell line for human epithelial cells of the proximal tubule (HK2) to demonstrate that Ketamine evokes early changes in expression of proteins central to the adherens junction complex. Furthermore we use AFM single-cell force spectroscopy to assess if these changes functionally uncouple cells of the proximal tubule ahead of any overt loss in epithelial cell function. Our data suggests that Ketamine (24-48 hrs) produces gross changes in cell morphology and cytoskeletal architecture towards a fibrotic phenotype. These physical changes matched the concentration-dependent (0.1-1 mg/mL) cytotoxic effect of Ketamine and reflect a loss in expression of the key adherens junction proteins epithelial (E)- and neural (N)-cadherin and ß-catenin. Down-regulation of protein expression does not involve the pro-fibrotic cytokine TGFß, nor is it regulated by the usual increase in expression of Slug or Snail, the transcriptional regulators for E-cadherin. However, the loss in E-cadherin can be partially rescued pharmacologically by blocking p38 MAPK using SB203580. These data provide compelling evidence that Ketamine alters epithelial cell-to-cell adhesion and cell-coupling in the proximal kidney via a non-classical pro-fibrotic mechanism and the data provides the first indication that this illicit substance can have major implications on renal function. Understanding Ketamine-induced renal pathology may identify targets for future therapeutic intervention.


Asunto(s)
Uniones Adherentes/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Ketamina/farmacología , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/efectos de los fármacos , Uniones Adherentes/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Moléculas de Adhesión de Unión/genética , Moléculas de Adhesión de Unión/metabolismo , Ketamina/toxicidad , Túbulos Renales Proximales/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo
9.
Cell Physiol Biochem ; 30(3): 575-86, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22832156

RESUMEN

BACKGROUND/AIMS: The extracellular calcium-sensing receptor (CaR) is expressed in pancreatic ß-cells where it is thought to facilitate cell-to-cell communication and augment insulin secretion. However, it is unknown how CaR activation improves ß-cell function. METHODS: Immunocytochemistry and western blotting confirmed the expression of CaR in MIN6 ß-cell line. The calcimimetic R568 (1µM) was used to increase the affinity of the CaR and specifically activate the receptor at a physiologically appropriate extracellular calcium concentration. Incorporation of 5-bromo-2'-deoxyuridine (BrdU) was used to measure cell proliferation, whilst changes in non-nutrient-evoked cytosolic calcium were assessed using fura-2-microfluorimetry. AFM-single-cell-force spectroscopy related CaR-evoked changes in epithelial (E)-cadherin expression to improved functional tethering between coupled cells. RESULTS: Activation of the CaR over 48hr doubled the expression of E-cadherin (206±41%) and increased L-type voltage-dependent calcium channel expression by 70% compared to control. These changes produced a 30% increase in cell-cell tethering and elevated the basal-to-peak amplitude of ATP (50µM) and tolbutamide (100µM)-evoked changes in cytosolic calcium. Activation of the receptor also increased PD98059 (1-100µM) and SU1498 (1-100µM)-dependent ß-cell proliferation. CONCLUSION: Our data suggest that activation of the CaR increases E-cadherin mediated functional tethering between ß-cells and increases expression of L-type VDCC and secretagogue-evoked changes in [Ca(2+)](i). These findings could explain how local changes in calcium, co-released with insulin, activate the CaR on neighbouring cells to help ensure efficient and appropriate secretory function.


Asunto(s)
Calcimiméticos/farmacología , Adhesión Celular/efectos de los fármacos , Receptores Sensibles al Calcio/metabolismo , Adenosina Trifosfato/farmacología , Animales , Cadherinas/metabolismo , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Cinamatos/farmacología , Flavonoides/farmacología , Hipoglucemiantes/farmacología , Inmunohistoquímica , Células Secretoras de Insulina/metabolismo , Ratones , Tolbutamida/farmacología
10.
J R Soc Interface ; 6(34): 471-8, 2009 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-18753124

RESUMEN

The popularity of biomimetic membranes has recently increased due to their biomedical applications such as tissue engineering/regenerative medicine and biosensors. Characterization of the viscoelastic properties of these membranes is important in developing functional membranes. A new micro-shaft poking technique has been developed, which is free from the complication of substrate backing, and which is normally an intractable problem in conventional indentation testing of membrane materials. A tailored indentation apparatus with a spherical indenter and a force resolution and displacement of 1 microN and 1 mum was constructed. Alginate and agarose were used to fabricate biomimetic membranes. Chicken epidermis was examined to represent a real biological tissue. The results show that the elastic modulus increased with concentration in hydrogels. Epidermis moduli appeared to increase with increased strain. Stress relaxation tests have also been conducted to examine the time-dependent behaviours of various hydrogels and a viscoelastic model has been correspondingly developed and applied to describe the experimental results. Potential applications of this new instrument to other membranes, both artificial and biological, have also been addressed.


Asunto(s)
Materiales Biomiméticos/química , Ensayo de Materiales/instrumentación , Sustancias Viscoelásticas/química , Animales , Pollos , Elasticidad , Epidermis/química , Hidrogeles/química , Ensayo de Materiales/métodos , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...