Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Epilepsy Res ; 203: 107380, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38781737

RESUMEN

OBJECTIVE: North Sea Progressive Myoclonus Epilepsy (NS-PME) is a rare genetic disorder characterized by ataxia, myoclonus and seizures with a progressive course. Although the cause of NS-PME is known, namely a homozygous mutation in the GOSR2 gene (c.430 G>T; p. Gly144Trp), sufficient treatment is lacking. Despite combinations of on average 3-5 anti-seizure medications (ASMs), debilitating myoclonus and seizures persist. Here we aimed to gain insight into the most effective anti-convulsive target in NS-PME by evaluating the individual effects of ASMs in a NS-PME Drosophila model. METHOD: A previously generated Drosophila model for NS-PME was used displaying progressive heat-sensitive seizures. We used this model to test 1. a first-generation ASM (sodium barbital), 2. common ASMs used in NS-PME (clonazepam, valproic acid, levetiracetam, ethosuximide) and 3. a novel third-generation ASM (ganaxolone) with similar mode of action to sodium barbital. Compounds were administered by adding them to the food in a range of concentrations. After 7 days of treatment, the percentage of heat-induced seizures was determined and compared to non-treated but affected controls. RESULTS: As previously reported in the NS-PME Drosophila model, sodium barbital resulted in significant seizure suppression, with increasing effect at higher dosages. Of the commonly prescribed ASMs, clonazepam and ethosuximide resulted in significant seizure suppression, whereas both valproic acid and levetiracetam did not show any changes in seizures. Interestingly, ganaxolone did result in seizure suppression as well. CONCLUSION: Of the six drugs tested, three of the four that resulted in seizure suppression (sodium barbital, clonazepam, ganaxolone) are primary known for their direct effect on GABAA receptors. This suggests that GABAA could be a potentially important target in the treatment of NS-PME. Consequently, these findings add rationale to the exploration of the clinical effect of ganaxolone in NS-PME and other progressive myoclonus epilepsies.


Asunto(s)
Anticonvulsivantes , Modelos Animales de Enfermedad , Drosophila , Epilepsias Mioclónicas Progresivas , Animales , Anticonvulsivantes/uso terapéutico , Anticonvulsivantes/farmacología , Epilepsias Mioclónicas Progresivas/genética , Epilepsias Mioclónicas Progresivas/tratamiento farmacológico , Animales Modificados Genéticamente , Receptores de GABA-A/genética , Receptores de GABA-A/efectos de los fármacos
2.
Mol Genet Metab ; 137(3): 283-291, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36240582

RESUMEN

Studies aimed at supporting different treatment approaches for pantothenate kinase-associated neurodegeneration (PKAN) have revealed the complexity of coenzyme A (CoA) metabolism and the limits of our current knowledge about disease pathogenesis. Here we offer a foundation for critically evaluating the myriad approaches, argue for the importance of unbiased disease models, and highlight some of the outstanding questions that are central to our understanding and treating PKAN.


Asunto(s)
Neurodegeneración Asociada a Pantotenato Quinasa , Humanos , Coenzima A/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
3.
Mol Cell ; 82(14): 2650-2665.e12, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35662397

RESUMEN

Coenzyme A (CoA) is essential for metabolism and protein acetylation. Current knowledge holds that each cell obtains CoA exclusively through biosynthesis via the canonical five-step pathway, starting with pantothenate uptake. However, recent studies have suggested the presence of additional CoA-generating mechanisms, indicating a more complex system for CoA homeostasis. Here, we uncovered pathways for CoA generation through inter-organismal flows of CoA precursors. Using traceable compounds and fruit flies with a genetic block in CoA biosynthesis, we demonstrate that progeny survive embryonal and early larval development by obtaining CoA precursors from maternal sources. Later in life, the microbiome can provide the essential CoA building blocks to the host, enabling continuation of normal development. A flow of stable, long-lasting CoA precursors between living organisms is revealed. This indicates the presence of complex strategies to maintain CoA homeostasis.


Asunto(s)
Coenzima A , Microbiota , Animales , Coenzima A/genética , Coenzima A/metabolismo , Drosophila/metabolismo , Femenino , Humanos , Madres , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Cigoto/metabolismo
4.
ACS Chem Biol ; 16(11): 2401-2414, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34582681

RESUMEN

The pantothenate analogue hopantenate (HoPan) is widely used as a modulator of coenzyme A (CoA) levels in cell biology and disease models─especially for pantothenate kinase associated neurodegeneration (PKAN), a genetic disease rooted in impaired CoA metabolism. This use of HoPan was based on reports that it inhibits pantothenate kinase (PanK), the first enzyme of CoA biosynthesis. Using a combination of in vitro enzyme kinetic studies, crystal structure analysis, and experiments in a typical PKAN cell biology model, we demonstrate that instead of inhibiting PanK, HoPan relies on it for metabolic activation. Once phosphorylated, HoPan inhibits the next enzyme in the CoA pathway─phosphopantothenoylcysteine synthetase (PPCS)─through formation of a nonproductive substrate complex. Moreover, the obtained structure of the human PPCS in complex with the inhibitor and activating nucleotide analogue provides new insights into the catalytic mechanism of PPCS enzymes─including the elusive binding mode for cysteine─and reveals the functional implications of mutations in the human PPCS that have been linked to severe dilated cardiomyopathy. Taken together, this study demonstrates that the molecular mechanism of action of HoPan is more complex than previously thought, suggesting that the results of studies in which it is used as a tool compound must be interpreted with care. Moreover, our findings provide a clear framework for evaluating the various factors that contribute to the potency of CoA-directed inhibitors, one that will prove useful in the future rational development of potential therapies of both human genetic and infectious diseases.


Asunto(s)
Coenzima A/metabolismo , Inhibidores Enzimáticos/farmacología , Ácido Pantoténico/análogos & derivados , Péptido Sintasas/antagonistas & inhibidores , Ácido gamma-Aminobutírico/análogos & derivados , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Células Cultivadas , Cristalización , Drosophila melanogaster , Cinética , Conformación Molecular , Ácido Pantoténico/farmacología , Péptido Sintasas/metabolismo , Especificidad por Sustrato , Ácido gamma-Aminobutírico/farmacología
5.
Biochim Biophys Acta Mol Cell Res ; 1868(4): 118965, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33450307

RESUMEN

Coenzyme A (CoA) is a key molecule in cellular metabolism including the tricarboxylic acid cycle, fatty acid synthesis, amino acid synthesis and lipid metabolism. Moreover, CoA is required for biological processes like protein post-translational modifications (PTMs) including acylation. CoA levels affect the amount of histone acetylation and thereby modulate gene expression. A direct influence of CoA levels on other PTMs, like CoAlation and 4'-phosphopantetheinylation has been relatively less addressed and will be discussed here. Increased CoA levels are associated with increased CoAlation, whereas decreased 4'-phosphopantetheinylation is observed under circumstances of decreased CoA levels. We discuss how these two PTMs can positively or negatively influence target proteins depending on CoA levels. This review highlights the impact of CoA levels on post-translational modifications, their counteractive interplay and the far-reaching consequences thereof.


Asunto(s)
Coenzima A/metabolismo , Histonas/metabolismo , Acetilación , Animales , Regulación de la Expresión Génica , Humanos , Metabolismo de los Lípidos , Estrés Oxidativo , Procesamiento Proteico-Postraduccional
6.
Development ; 147(20)2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994170

RESUMEN

Programmed cell death and consecutive removal of cellular remnants is essential for development. During late stages of Drosophila melanogaster oogenesis, the small somatic follicle cells that surround the large nurse cells promote non-apoptotic nurse cell death, subsequently engulf them, and contribute to the timely removal of nurse cell corpses. Here, we identify a role for Vps13 in the timely removal of nurse cell corpses downstream of developmental programmed cell death. Vps13 is an evolutionarily conserved peripheral membrane protein associated with membrane contact sites and lipid transfer. It is expressed in late nurse cells, and persistent nurse cell remnants are observed when Vps13 is depleted from nurse cells but not from follicle cells. Microscopic analysis revealed enrichment of Vps13 in close proximity to the plasma membrane and the endoplasmic reticulum in nurse cells undergoing degradation. Ultrastructural analysis uncovered the presence of an underlying Vps13-dependent membranous structure in close association with the plasma membrane. The newly identified structure and function suggests the presence of a Vps13-dependent process required for complete degradation of bulky remnants of dying cells.


Asunto(s)
Apoptosis , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Núcleo Celular/metabolismo , Regulación hacia Abajo , Drosophila melanogaster/ultraestructura , Retículo Endoplásmico/metabolismo , Femenino , Fertilidad , Mutación/genética , Oogénesis , Folículo Ovárico/citología , Folículo Ovárico/metabolismo , Folículo Ovárico/ultraestructura , Fenotipo
7.
Neuroscience ; 423: 1-11, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31682953

RESUMEN

Progressive myoclonic epilepsies (PMEs) comprise a group of rare disorders of different genetic aetiologies, leading to childhood-onset myoclonus, myoclonic seizures and subsequent neurological decline. One of the genetic causes for PME, a mutation in the gene coding for Golgi SNAP receptor 2 (GOSR2), gives rise to a PME-subtype prevalent in Northern Europe and hence referred to as North Sea Progressive Myoclonic Epilepsy (NS-PME). Treatment for NS-PME, as for all PME subtypes, is symptomatic; the pathophysiology of NS-PME is currently unknown, precluding targeted therapy. Here, we investigated the pathophysiology of NS-PME. By means of chart review in combination with interviews with patients (n = 14), we found heat to be an exacerbating factor for a majority of NS-PME patients (86%). To substantiate these findings, we designed a NS-PME Drosophila melanogaster model. Downregulation of the Drosophila GOSR2-orthologue Membrin leads to heat-induced seizure-like behaviour. Specific downregulation of GOSR2/Membrin in glia but not in neuronal cells resulted in a similar phenotype, which was progressive as the flies aged and was partially responsive to treatment with sodium barbital. Our data suggest a role for GOSR2 in glia in the pathophysiology of NS-PME.


Asunto(s)
Calor , Epilepsias Mioclónicas Progresivas/genética , Epilepsias Mioclónicas Progresivas/fisiopatología , Adolescente , Adulto , Animales , Niño , Preescolar , Drosophila , Europa (Continente) , Femenino , Humanos , Entrevistas como Asunto , Masculino , Modelos Animales , Mutación , Epilepsias Mioclónicas Progresivas/inducido químicamente , Neuroglía , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Estudios Retrospectivos
8.
Neurobiol Dis ; 124: 108-117, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30408590

RESUMEN

Several neurodegenerative diseases like Huntington's, a polyglutamine (PolyQ) disease, are initiated by protein aggregation in neurons. Furthermore, these diseases are also associated with a multitude of responses in non-neuronal cells in the brain, in particular glial cells, like astrocytes. These non-neuronal responses have repeatedly been suggested to play a disease-modulating role, but how these may be exploited to delay the progression of neurodegeneration has remained unclear. Interestingly, one of the molecular changes that astrocytes undergo includes the upregulation of certain Heat Shock Proteins (HSPs) that are classically considered to maintain protein homeostasis, thus resulting in cell autonomous protection. Previously, we discovered DNAJB6, a member of the human DNAJ family, as potent cell autonomous suppressor of PolyQ aggregation and related neurodegeneration. Using cell type specific expression systems in D. melanogaster, we show that exclusive expression of DNAJB6 in astrocytes (that do not express PolyQ protein) can delay neurodegeneration and expands lifespan when the PolyQ protein is exclusively expressed in neurons (that do not co-express DNAJB6 themselves). This provides direct evidence for a non-cell autonomous protective role of astrocytes in PolyQ diseases.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Enfermedad de Huntington/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Femenino , Proteínas del Choque Térmico HSP40/genética , Proteína Huntingtina/metabolismo , Masculino , Chaperonas Moleculares/genética , Proteínas del Tejido Nervioso/genética , Péptidos/metabolismo
9.
Am J Hum Genet ; 102(6): 1018-1030, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29754768

RESUMEN

Coenzyme A (CoA) is an essential metabolic cofactor used by around 4% of cellular enzymes. Its role is to carry and transfer acetyl and acyl groups to other molecules. Cells can synthesize CoA de novo from vitamin B5 (pantothenate) through five consecutive enzymatic steps. Phosphopantothenoylcysteine synthetase (PPCS) catalyzes the second step of the pathway during which phosphopantothenate reacts with ATP and cysteine to form phosphopantothenoylcysteine. Inborn errors of CoA biosynthesis have been implicated in neurodegeneration with brain iron accumulation (NBIA), a group of rare neurological disorders characterized by accumulation of iron in the basal ganglia and progressive neurodegeneration. Exome sequencing in five individuals from two unrelated families presenting with dilated cardiomyopathy revealed biallelic mutations in PPCS, linking CoA synthesis with a cardiac phenotype. Studies in yeast and fruit flies confirmed the pathogenicity of identified mutations. Biochemical analysis revealed a decrease in CoA levels in fibroblasts of all affected individuals. CoA biosynthesis can occur with pantethine as a source independent from PPCS, suggesting pantethine as targeted treatment for the affected individuals still alive.


Asunto(s)
Cardiomiopatía Dilatada/enzimología , Cardiomiopatía Dilatada/genética , Genes Recesivos , Mutación/genética , Péptido Sintasas/genética , Secuencia de Aminoácidos , Animales , Vías Biosintéticas , Cardiomiopatía Dilatada/diagnóstico , Carnitina/análogos & derivados , Carnitina/metabolismo , Preescolar , Coenzima A/biosíntesis , Demografía , Drosophila , Estabilidad de Enzimas , Femenino , Fibroblastos/metabolismo , Corazón/fisiopatología , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Panteteína/administración & dosificación , Panteteína/análogos & derivados , Linaje , Péptido Sintasas/sangre , Péptido Sintasas/química , Péptido Sintasas/deficiencia , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/genética
10.
J Exp Biol ; 221(Pt 10)2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29650755

RESUMEN

Temperature influences the physiology and behavior of all organisms. For ectotherms, which lack central temperature regulation, temperature adaptation requires sheltering from or moving to a heat source. As temperature constrains the rate of metabolic reactions, it can directly affect ectotherm physiology and thus behavioral performance. This direct effect is particularly relevant for insects, as their small bodies readily equilibrate with ambient temperature. In fact, models of enzyme kinetics applied to insect behavior predict performance at different temperatures suggesting that thermal physiology governs behavior. However, insects also possess thermosensory neurons critical for locating preferred temperatures, showing cognitive control. This suggests that temperature-related behavior can emerge directly from a physiological effect, indirectly as a consequence of thermosensory processing, or through a combination of both. To separate the roles of thermal physiology and cognitive control, we developed an arena that allows fast temperature changes in time and space, and in which animals' movements are automatically quantified. We exposed wild-type Drosophila melanogaster and thermosensory receptor mutants to a dynamic temperature environment and tracked their movements. The locomotor speed of wild-type flies closely matched models of enzyme kinetics, but the behavior of thermosensory mutants did not. Mutations in thermosensory receptor gene dTrpA1 (Transient Receptor Potential A1) expressed in the brain resulted in a complete lack of response to temperature changes, while mutations in peripheral thermosensory receptor gene Gr28b(D) resulted in a diminished response. We conclude that flies react to temperature through cognitive control, informed by interactions between various thermosensory neurons, the behavioral output of which resembles models of enzyme kinetics.


Asunto(s)
Drosophila melanogaster/fisiología , Locomoción , Receptores de Superficie Celular/fisiología , Temperatura , Animales , Encéfalo/metabolismo , Cognición/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Canales Iónicos/genética , Masculino , Mutación , Receptores de Superficie Celular/genética
11.
J Am Heart Assoc ; 6(10)2017 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-29066441

RESUMEN

BACKGROUND: Derailment of proteostasis, the homeostasis of production, function, and breakdown of proteins, contributes importantly to the self-perpetuating nature of atrial fibrillation (AF), the most common heart rhythm disorder in humans. Autophagy plays an important role in proteostasis by degrading aberrant proteins and organelles. Herein, we investigated the role of autophagy and its activation pathway in experimental and clinical AF. METHODS AND RESULTS: Tachypacing of HL-1 atrial cardiomyocytes causes a gradual and significant activation of autophagy, as evidenced by enhanced LC3B-II expression, autophagic flux and autophagosome formation, and degradation of p62, resulting in reduction of Ca2+ amplitude. Autophagy is activated downstream of endoplasmic reticulum (ER) stress: blocking ER stress by the chemical chaperone 4-phenyl butyrate, overexpression of the ER chaperone-protein heat shock protein A5, or overexpression of a phosphorylation-blocked mutant of eukaryotic initiation factor 2α (eIF2α) prevents autophagy activation and Ca2+-transient loss in tachypaced HL-1 cardiomyocytes. Moreover, pharmacological inhibition of ER stress in tachypaced Drosophila confirms its role in derailing cardiomyocyte function. In vivo treatment with sodium salt of phenyl butyrate protected atrial-tachypaced dog cardiomyocytes from electrical remodeling (action potential duration shortening, L-type Ca2+-current reduction), cellular Ca2+-handling/contractile dysfunction, and ER stress and autophagy; it also attenuated AF progression. Finally, atrial tissue from patients with persistent AF reveals activation of autophagy and induction of ER stress, which correlates with markers of cardiomyocyte damage. CONCLUSIONS: These results identify ER stress-associated autophagy as an important pathway in AF progression and demonstrate the potential therapeutic action of the ER-stress inhibitor 4-phenyl butyrate.


Asunto(s)
Fibrilación Atrial/patología , Remodelación Atrial , Autofagia , Estrés del Retículo Endoplásmico , Atrios Cardíacos/patología , Miocitos Cardíacos/patología , Animales , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Estimulación Cardíaca Artificial , Línea Celular , Modelos Animales de Enfermedad , Perros , Drosophila melanogaster , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Femenino , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/metabolismo , Atrios Cardíacos/fisiopatología , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Persona de Mediana Edad , Mutación , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Fenilbutiratos/farmacología , Fosforilación , Proteostasis , Proteína Sequestosoma-1/metabolismo , Factores de Tiempo , Transfección
12.
Sci Rep ; 7(1): 11260, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28900161

RESUMEN

Coenzyme A is an essential metabolite known for its central role in over one hundred cellular metabolic reactions. In cells, Coenzyme A is synthesized de novo in five enzymatic steps with vitamin B5 as the starting metabolite, phosphorylated by pantothenate kinase. Mutations in the pantothenate kinase 2 gene cause a severe form of neurodegeneration for which no treatment is available. One therapeutic strategy is to generate Coenzyme A precursors downstream of the defective step in the pathway. Here we describe the synthesis, characteristics and in vivo rescue potential of the acetyl-Coenzyme A precursor S-acetyl-4'-phosphopantetheine as a possible treatment for neurodegeneration associated with pantothenate kinase deficiency.


Asunto(s)
Trastornos Heredodegenerativos del Sistema Nervioso/tratamiento farmacológico , Panteteína/análogos & derivados , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Suero/química , Animales , Línea Celular , Modelos Animales de Enfermedad , Drosophila , Humanos , Ratones , Panteteína/administración & dosificación , Panteteína/síntesis química , Panteteína/aislamiento & purificación , Panteteína/farmacocinética , Resultado del Tratamiento
14.
PLoS One ; 12(1): e0170106, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28107480

RESUMEN

Chorea-Acanthocytosis is a rare, neurodegenerative disorder characterized by progressive loss of locomotor and cognitive function. It is caused by loss of function mutations in the Vacuolar Protein Sorting 13A (VPS13A) gene, which is conserved from yeast to human. The consequences of VPS13A dysfunction in the nervous system are still largely unspecified. In order to study the consequences of VPS13A protein dysfunction in the ageing central nervous system we characterized a Drosophila melanogaster Vps13 mutant line. The Drosophila Vps13 gene encoded a protein of similar size as human VPS13A. Our data suggest that Vps13 is a peripheral membrane protein located to endosomal membranes and enriched in the fly head. Vps13 mutant flies showed a shortened life span and age associated neurodegeneration. Vps13 mutant flies were sensitive to proteotoxic stress and accumulated ubiquitylated proteins. Levels of Ref(2)P, the Drosophila orthologue of p62, were increased and protein aggregates accumulated in the central nervous system. Overexpression of the human Vps13A protein in the mutant flies partly rescued apparent phenotypes. This suggests a functional conservation of human VPS13A and Drosophila Vps13. Our results demonstrate that Vps13 is essential to maintain protein homeostasis in the larval and adult Drosophila brain. Drosophila Vps13 mutants are suitable to investigate the function of Vps13 in the brain, to identify genetic enhancers and suppressors and to screen for potential therapeutic targets for Chorea-Acanthocytosis.


Asunto(s)
Encéfalo/fisiología , Proteínas de Drosophila/fisiología , Homeostasis/fisiología , Proteínas del Tejido Nervioso/fisiología , Proteínas de Transporte Vesicular/fisiología , Animales , Encéfalo/patología , Drosophila , Proteínas de Drosophila/genética , Humanos , Mutación , Proteínas de Transporte Vesicular/genética
15.
Nat Rev Mol Cell Biol ; 17(10): 605-6, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27552973

RESUMEN

The consensus has been that intracellular coenzyme A (CoA) is obtained exclusively by de novo biosynthesis via a universal, conserved five-step pathway in the cell cytosol. However, old and new evidence suggest that cells (and some microorganisms) have several strategies to obtain CoA, with 4'-phosphopantetheine (P-PantSH; the fourth intermediate in the canonical CoA biosynthetic pathway) serving as a 'nexus' metabolite.


Asunto(s)
Coenzima A/biosíntesis , Panteteína/análogos & derivados , Animales , Transporte Biológico , Vías Biosintéticas , Permeabilidad de la Membrana Celular , Humanos , Panteteína/metabolismo
16.
Nucleic Acids Res ; 44(1): 152-63, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26384414

RESUMEN

Increasing amounts of data support a role for guanine quadruplex (G4) DNA and RNA structures in various cellular processes. We stained different organisms with monoclonal antibody 1H6 specific for G4 DNA. Strikingly, immuno-electron microscopy showed exquisite specificity for heterochromatin. Polytene chromosomes from Drosophila salivary glands showed bands that co-localized with heterochromatin proteins HP1 and the SNF2 domain-containing protein SUUR. Staining was retained in SUUR knock-out mutants but lost upon overexpression of SUUR. Somatic cells in Macrostomum lignano were strongly labeled, but pluripotent stem cells labeled weakly. Similarly, germline stem cells in Drosophila ovaries were weakly labeled compared to most other cells. The unexpected presence of G4 structures in heterochromatin and the difference in G4 staining between somatic cells and stem cells with germline DNA in ciliates, flatworms, flies and mammals point to a conserved role for G4 structures in nuclear organization and cellular differentiation.


Asunto(s)
G-Cuádruplex , Guanina , Heterocromatina/química , Heterocromatina/genética , Animales , Cilióforos , Drosophila , Células Germinativas/metabolismo , Histonas/metabolismo , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/ultraestructura , Platelmintos , Cromosomas Politénicos/química , Cromosomas Politénicos/genética , Ratas
17.
Mol Med ; 21(1): 758-768, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26467707

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is a polyglutamine (polyQ) disorder caused by a CAG repeat expansion in the ataxin-3 (ATXN3) gene resulting in toxic protein aggregation. Inflammation and oxidative stress are considered secondary factors contributing to the progression of this neurodegenerative disease. There is no cure that halts or reverses the progressive neurodegeneration of SCA3. Here we show that overexpression of cystathionine γ-lyase, a central enzyme in cysteine metabolism, is protective in a Drosophila model for SCA3. SCA3 flies show eye degeneration, increased oxidative stress, insoluble protein aggregates, reduced levels of protein persulfidation and increased activation of the innate immune response. Overexpression of Drosophila cystathionine γ-lyase restores protein persulfidation, decreases oxidative stress, dampens the immune response and improves SCA3-associated tissue degeneration. Levels of insoluble protein aggregates are not altered; therefore, the data implicate a modifying role of cystathionine γ-lyase in ameliorating the downstream consequence of protein aggregation leading to protection against SCA3-induced tissue degeneration. The cystathionine γ-lyase expression is decreased in affected brain tissue of SCA3 patients, suggesting that enhancers of cystathionine γ-lyase expression or activity are attractive candidates for future therapies.

18.
Aging Cell ; 15(2): 217-26, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26705243

RESUMEN

During aging, oxidized, misfolded, and aggregated proteins accumulate in cells, while the capacity to deal with protein damage declines severely. To cope with the toxicity of damaged proteins, cells rely on protein quality control networks, in particular proteins belonging to the family of heat-shock proteins (HSPs). As safeguards of the cellular proteome, HSPs assist in protein folding and prevent accumulation of damaged, misfolded proteins. Here, we compared the capacity of all Drosophila melanogaster small HSP family members for their ability to assist in refolding stress-denatured substrates and/or to prevent aggregation of disease-associated misfolded proteins. We identified CG14207 as a novel and potent small HSP member that exclusively assisted in HSP70-dependent refolding of stress-denatured proteins. Furthermore, we report that HSP67BC, which has no role in protein refolding, was the most effective small HSP preventing toxic protein aggregation in an HSP70-independent manner. Importantly, overexpression of both CG14207 and HSP67BC in Drosophila leads to a mild increase in lifespan, demonstrating that increased levels of functionally diverse small HSPs can promote longevity in vivo.


Asunto(s)
Proteínas de Choque Térmico Pequeñas/fisiología , Longevidad/fisiología , Animales , Drosophila , Femenino , Homeostasis , Masculino
19.
Nat Chem Biol ; 11(10): 784-92, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26322826

RESUMEN

The metabolic cofactor coenzyme A (CoA) gained renewed attention because of its roles in neurodegeneration, protein acetylation, autophagy and signal transduction. The long-standing dogma is that eukaryotic cells obtain CoA exclusively via the uptake of extracellular precursors, especially vitamin B5, which is intracellularly converted through five conserved enzymatic reactions into CoA. This study demonstrates an alternative mechanism that allows cells and organisms to adjust intracellular CoA levels by using exogenous CoA. Here CoA was hydrolyzed extracellularly by ectonucleotide pyrophosphatases to 4'-phosphopantetheine, a biologically stable molecule able to translocate through membranes via passive diffusion. Inside the cell, 4'-phosphopantetheine was enzymatically converted back to CoA by the bifunctional enzyme CoA synthase. Phenotypes induced by intracellular CoA deprivation were reversed when exogenous CoA was provided. Our findings answer long-standing questions in fundamental cell biology and have major implications for the understanding of CoA-related diseases and therapies.


Asunto(s)
Caenorhabditis elegans/metabolismo , Coenzima A/biosíntesis , Drosophila/metabolismo , Panteteína/análogos & derivados , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Línea Celular , Coenzima A/sangre , Coenzima A/farmacología , Coenzima A Ligasas/metabolismo , Drosophila/citología , Drosophila/crecimiento & desarrollo , Femenino , Células HEK293 , Humanos , Longevidad/fisiología , Masculino , Ratones Endogámicos C57BL , Panteteína/sangre , Panteteína/metabolismo , Panteteína/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
20.
Biochem Soc Trans ; 42(4): 1025-32, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25109997

RESUMEN

In 1945, Fritz Lipmann discovered a heat-stable cofactor required for many enzyme-catalysed acetylation reactions. He later determined the structure for this acetylation coenzyme, or coenzyme A (CoA), an achievement for which he was awarded the Nobel Prize in 1953. CoA is now firmly embedded in the literature, and in students' minds, as an acyl carrier in metabolic reactions. However, recent research has revealed diverse and important roles for CoA above and beyond intermediary metabolism. As well as participating in direct post-translational regulation of metabolic pathways by protein acetylation, CoA modulates the epigenome via acetylation of histones. The organization of CoA biosynthetic enzymes into multiprotein complexes with different partners also points to close linkages between the CoA pool and multiple signalling pathways. Dysregulation of CoA biosynthesis or CoA thioester homoeostasis is associated with various human pathologies and, although the biochemistry of CoA biosynthesis is highly conserved, there are significant sequence and structural differences between microbial and human biosynthetic enzymes. Therefore the CoA biosynthetic pathway is an attractive target for drug discovery. The purpose of the Coenzyme A and Its Derivatives in Cellular Metabolism and Disease Biochemical Society Focused Meeting was to bring together researchers from around the world to discuss the most recent advances on the influence of CoA, its biosynthetic enzymes and its thioesters in cellular metabolism and diseases and to discuss challenges and opportunities for the future.


Asunto(s)
Coenzima A/metabolismo , Acetilación , Animales , Humanos , Enfermedades Neurodegenerativas/metabolismo , Ácido Pantoténico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...