Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Parasit Vectors ; 9: 18, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26762514

RESUMEN

BACKGROUND: Mosquitoes host diverse microbial communities that influence many aspects of their biology including reproduction, digestion, and ability to transmit pathogens. Unraveling the composition, structure, and function of these microbiota can provide new opportunities for exploiting microbial function for mosquito-borne disease control. METHODS: MiSeq® sequencing of 16S rRNA gene amplicons was used to characterize the microbiota of adult females of Culex pipiens L. and Cx. restuans Theobald collected from nine study sites in central Illinois. RESULTS: Out of 195 bacterial OTUs that were identified, 86 were shared between the two mosquito species while 16 and 93 OTUs were unique to Cx. pipiens and Cx. restuans, respectively. The composition and structure of microbial communities differed significantly between the two mosquito species with Cx. restuans hosting a more diverse bacterial community compared to Cx. pipiens. Wolbachia (OTU836919) was the dominant bacterial species in Cx. pipiens accounting for 91% of total microbiota while Sphingomonas (OTU817982) was the dominant bacterial species in Cx. restuans accounting for 31% of total microbiota. Only 3 and 6 OTUs occurred in over 60% of individuals in Cx. pipiens and Cx. restuans, respectively. There was little effect of study site on bacterial community structure of either mosquito species. CONCLUSION: These results suggest that the two mosquito species support distinct microbial communities that are sparsely distributed between individuals. These findings will allow investigations of the role of identified microbiota on the spatial and temporal heterogeneity in WNV transmission and their potential application in disease control.


Asunto(s)
Culex/microbiología , Insectos Vectores/microbiología , Microbiota/genética , Animales , Secuencia de Bases , Culex/clasificación , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Femenino , Humanos , Illinois , Datos de Secuencia Molecular , Control de Mosquitos , Análisis de Secuencia de ADN
2.
BMC Plant Biol ; 15: 278, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26572986

RESUMEN

BACKGROUND: The ability of a plant to overcome animal-induced damage is referred to as compensation or tolerance and ranges from undercompensation (decreased fitness when damaged) to overcompensation (increased fitness when damaged). Although it is clear that genetic variation for compensation exists among plants, little is known about the specific genetic underpinnings leading to enhanced fitness. Our previous study identified the enzyme GLUCOSE-6-PHOSPHATE DEHYDROGENASE 1 (G6PD1) as a key regulator contributing to the phenomenon of overcompensation via its role in the oxidative pentose phosphate pathway (OPPP). Apart from G6PD1 we also identified an invertase gene which was up-regulated following damage and that potentially integrates with the OPPP. The invertase family of enzymes hydrolyze sucrose to glucose and fructose, whereby the glucose produced is shunted into the OPPP and presumably supports plant regrowth, development, and ultimately compensation. In the current study, we measured the relative expression of 12 invertase genes over the course of plant development in the Arabidopsis thaliana genotypes Columbia-4 and Landsberg erecta, which typically overcompensate and undercompensate, respectively, when damaged. We also compared the compensatory performances of a set of invertase knockout mutants to the Columbia-4 wild type. RESULTS: We report that Columbia-4 significantly up-regulated 9 of 12 invertase genes when damaged relative to when undamaged, and ultimately overcompensated for fruit production. Landsberg erecta, in contrast, down-regulated two invertase genes following damage and suffered reduced fitness. Knockout mutants of two invertase genes both exhibited significant undercompensation for fruit production, exhibiting a complete reversal of the wild type Col-4's overcompensation. CONCLUSION: Collectively, these results confirm that invertases are essential for not only normal plant growth and development, but also plants' abilities to regrow and ultimately compensate for fitness following apical damage.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Herbivoria
3.
Genetics ; 195(2): 589-98, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23934891

RESUMEN

That some plants benefit from being eaten is counterintuitive, yet there is now considerable evidence demonstrating enhanced fitness following herbivory (i.e., plants can overcompensate). Although there is evidence that genetic variation for compensation exists, little is known about the genetic mechanisms leading to enhanced growth and reproduction following herbivory. We took advantage of the compensatory variation in recombinant inbred lines of Arabidopsis thaliana, combined with microarray and QTL analyses to assess the molecular basis of overcompensation. We found three QTL explaining 11.4, 10.1, and 26.7% of the variation in fitness compensation, respectively, and 109 differentially expressed genes between clipped and unclipped plants of the overcompensating ecotype Columbia. From the QTL/microarray screen we uncovered one gene that plays a significant role in overcompensation: glucose-6-phosphate-1-dehydrogenase (G6PDH1). Knockout studies of Transfer-DNA (T-DNA) insertion lines and complementation studies of G6PDH1 verify its role in compensation. G6PDH1 is a key enzyme in the oxidative pentose-phosphate pathway that plays a central role in plant metabolism. We propose that plants capable of overcompensating reprogram their transcriptional activity by up-regulating defensive genes and genes involved in energy metabolism and by increasing DNA content (via endoreduplication) with the increase in DNA content feeding back on pathways involved in defense and metabolism through increased gene expression.


Asunto(s)
Arabidopsis/genética , Aptitud Genética , Glucosafosfato Deshidrogenasa/genética , Sitios de Carácter Cuantitativo/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Glucosa/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Herbivoria/genética , Mutagénesis Insercional , Oxidación-Reducción , Vía de Pentosa Fosfato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...