RESUMEN
Aim: This real-world study aimed to describe patient and clinical characteristics, treatment patterns and outcomes for patients with HR+/HER2- metastatic breast cancer receiving abemaciclib in France, Italy and Spain.Materials & methods: A multicenter chart review was conducted for adult females with HR+/HER2- advanced/metastatic breast cancer who received abemaciclib in routine care. Real-world progression-free survival (rwPFS) was estimated via Kaplan-Meier curves.Results: This study included 151, 173 and 175 patients from France, Italy and Spain, respectively. Abemaciclib was mostly prescribed as first-line therapy concomitantly with hormone therapy. Median rwPFS was >20 months and the 1-year rwPFS rate was >70%.Conclusion: Effectiveness was similar across the three countries and aligns with pivotal studies.
Abemaciclib use in the clinic in France, Italy & SpainThis study describes patients, the treatments they have received and the results of those treatments for patients with the most common type of advanced breast cancer. These patients were taking abemaciclib plus hormonal therapy in routine breast cancer care in France, Italy and Spain. The information used to conduct this study was taken from patients' medical charts. In this real-world study, abemaciclib was mostly used as the initial treatment for advanced breast cancer. Abemaciclib effectiveness was similar across the three countries confirming findings from previous studies. Our study supports the use of abemaciclib for patients with HR+/HER2- advanced breast cancer.
Asunto(s)
Aminopiridinas , Bencimidazoles , Neoplasias de la Mama , Receptor ErbB-2 , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/mortalidad , Persona de Mediana Edad , España/epidemiología , Bencimidazoles/uso terapéutico , Aminopiridinas/uso terapéutico , Receptor ErbB-2/metabolismo , Anciano , Francia/epidemiología , Adulto , Italia/epidemiología , Receptores de Progesterona/metabolismo , Receptores de Estrógenos/metabolismo , Anciano de 80 o más Años , Supervivencia sin Progresión , Estudios Retrospectivos , Metástasis de la NeoplasiaRESUMEN
BACKGROUND: Psychotic-like experiences (PLEs) are subtle, subclinical perturbations of perceptions and thoughts and are common in the general population. Their characterisation and unidimensionality are still debated. METHODS: This study was conducted by the Electronic-halluCinations-Like Experiences Cross-culTural International Consortium (E-CLECTIC) and aimed at measuring the Community Assessment of Psychic Experiences (CAPE) factorial structure across five European countries (Belgium; Czech Republic, Germany; Greece, and Spain) and testing the adequacy of the unidimensional polytomous Rasch model of the tool via Partial Credit Model (PCM) of the CAPE to detect people with a high risk for developing psychosis. RESULTS: The sample included 1461 participants from the general population. The factorial analysis confirmed the best fit for the bifactor implementation of the three-factor model, including the positive, negative and depressive dimensions and a general factor. Moreover, the unidimensional polytomous Rasch analysis confirmed that CAPE responses reflected one underlying psychosis proneness. CONCLUSIONS: The study proved that the CAPE measures a single latent dimension of psychosis-proneness. The CAPE might help locate and estimate psychosis risk and can be used as a screening tool in primary care settings/education settings.
Asunto(s)
Psicometría , Trastornos Psicóticos , Humanos , Trastornos Psicóticos/diagnóstico , Trastornos Psicóticos/psicología , Masculino , Femenino , Psicometría/normas , Adulto , Adulto Joven , Persona de Mediana Edad , Comparación Transcultural , Alemania , Europa (Continente) , Grecia , Bélgica , República Checa , España , Escalas de Valoración Psiquiátrica/normas , Alucinaciones/diagnóstico , Adolescente , Análisis FactorialRESUMEN
BACKGROUND: Previous mobile health (mHealth) studies have revealed significant links between depression and circadian rhythm features measured via wearables. However, the comprehensive impact of seasonal variations was not fully considered in these studies, potentially biasing interpretations in real-world settings. OBJECTIVE: This study aims to explore the associations between depression severity and wearable-measured circadian rhythms while accounting for seasonal impacts. METHODS: Data were sourced from a large longitudinal mHealth study, wherein participants' depression severity was assessed biweekly using the 8-item Patient Health Questionnaire (PHQ-8), and participants' behaviors, including sleep, step count, and heart rate (HR), were tracked via Fitbit devices for up to 2 years. We extracted 12 circadian rhythm features from the 14-day Fitbit data preceding each PHQ-8 assessment, including cosinor variables, such as HR peak timing (HR acrophase), and nonparametric features, such as the onset of the most active continuous 10-hour period (M10 onset). To investigate the association between depression severity and circadian rhythms while also assessing the seasonal impacts, we used three nested linear mixed-effects models for each circadian rhythm feature: (1) incorporating the PHQ-8 score as an independent variable, (2) adding seasonality, and (3) adding an interaction term between season and the PHQ-8 score. RESULTS: Analyzing 10,018 PHQ-8 records alongside Fitbit data from 543 participants (n=414, 76.2% female; median age 48, IQR 32-58 years), we found that after adjusting for seasonal effects, higher PHQ-8 scores were associated with reduced daily steps (ß=-93.61, P<.001), increased sleep variability (ß=0.96, P<.001), and delayed circadian rhythms (ie, sleep onset: ß=0.55, P=.001; sleep offset: ß=1.12, P<.001; M10 onset: ß=0.73, P=.003; HR acrophase: ß=0.71, P=.001). Notably, the negative association with daily steps was more pronounced in spring (ß of PHQ-8 × spring = -31.51, P=.002) and summer (ß of PHQ-8 × summer = -42.61, P<.001) compared with winter. Additionally, the significant correlation with delayed M10 onset was observed solely in summer (ß of PHQ-8 × summer = 1.06, P=.008). Moreover, compared with winter, participants experienced a shorter sleep duration by 16.6 minutes, an increase in daily steps by 394.5, a delay in M10 onset by 20.5 minutes, and a delay in HR peak time by 67.9 minutes during summer. CONCLUSIONS: Our findings highlight significant seasonal influences on human circadian rhythms and their associations with depression, underscoring the importance of considering seasonal variations in mHealth research for real-world applications. This study also indicates the potential of wearable-measured circadian rhythms as digital biomarkers for depression.
Asunto(s)
Ritmo Circadiano , Depresión , Estaciones del Año , Dispositivos Electrónicos Vestibles , Humanos , Femenino , Ritmo Circadiano/fisiología , Masculino , Adulto , Estudios Longitudinales , Depresión/fisiopatología , Persona de Mediana Edad , Estudios Retrospectivos , Telemedicina/estadística & datos numéricosRESUMEN
BACKGROUND: Prior research has associated spoken language use with depression, yet studies often involve small or non-clinical samples and face challenges in the manual transcription of speech. This paper aimed to automatically identify depression-related topics in speech recordings collected from clinical samples. METHODS: The data included 3919 English free-response speech recordings collected via smartphones from 265 participants with a depression history. We transcribed speech recordings via automatic speech recognition (Whisper tool, OpenAI) and identified principal topics from transcriptions using a deep learning topic model (BERTopic). To identify depression risk topics and understand the context, we compared participants' depression severity and behavioral (extracted from wearable devices) and linguistic (extracted from transcribed texts) characteristics across identified topics. RESULTS: From the 29 topics identified, we identified 6 risk topics for depression: 'No Expectations', 'Sleep', 'Mental Therapy', 'Haircut', 'Studying', and 'Coursework'. Participants mentioning depression risk topics exhibited higher sleep variability, later sleep onset, and fewer daily steps and used fewer words, more negative language, and fewer leisure-related words in their speech recordings. LIMITATIONS: Our findings were derived from a depressed cohort with a specific speech task, potentially limiting the generalizability to non-clinical populations or other speech tasks. Additionally, some topics had small sample sizes, necessitating further validation in larger datasets. CONCLUSION: This study demonstrates that specific speech topics can indicate depression severity. The employed data-driven workflow provides a practical approach for analyzing large-scale speech data collected from real-world settings.
Asunto(s)
Aprendizaje Profundo , Habla , Humanos , Teléfono Inteligente , Depresión/diagnóstico , Software de Reconocimiento del HablaRESUMEN
BACKGROUND: Major depressive disorder (MDD) affects millions of people worldwide, but timely treatment is not often received owing in part to inaccurate subjective recall and variability in the symptom course. Objective and frequent MDD monitoring can improve subjective recall and help to guide treatment selection. Attempts have been made, with varying degrees of success, to explore the relationship between the measures of depression and passive digital phenotypes (features) extracted from smartphones and wearables devices to remotely and continuously monitor changes in symptomatology. However, a number of challenges exist for the analysis of these data. These include maintaining participant engagement over extended time periods and therefore understanding what constitutes an acceptable threshold of missing data; distinguishing between the cross-sectional and longitudinal relationships for different features to determine their utility in tracking within-individual longitudinal variation or screening individuals at high risk; and understanding the heterogeneity with which depression manifests itself in behavioral patterns quantified by the passive features. OBJECTIVE: We aimed to address these 3 challenges to inform future work in stratified analyses. METHODS: Using smartphone and wearable data collected from 479 participants with MDD, we extracted 21 features capturing mobility, sleep, and smartphone use. We investigated the impact of the number of days of available data on feature quality using the intraclass correlation coefficient and Bland-Altman analysis. We then examined the nature of the correlation between the 8-item Patient Health Questionnaire (PHQ-8) depression scale (measured every 14 days) and the features using the individual-mean correlation, repeated measures correlation, and linear mixed effects model. Furthermore, we stratified the participants based on their behavioral difference, quantified by the features, between periods of high (depression) and low (no depression) PHQ-8 scores using the Gaussian mixture model. RESULTS: We demonstrated that at least 8 (range 2-12) days were needed for reliable calculation of most of the features in the 14-day time window. We observed that features such as sleep onset time correlated better with PHQ-8 scores cross-sectionally than longitudinally, whereas features such as wakefulness after sleep onset correlated well with PHQ-8 longitudinally but worse cross-sectionally. Finally, we found that participants could be separated into 3 distinct clusters according to their behavioral difference between periods of depression and periods of no depression. CONCLUSIONS: This work contributes to our understanding of how these mobile health-derived features are associated with depression symptom severity to inform future work in stratified analyses.
Asunto(s)
Trastorno Depresivo Mayor , Telemedicina , Dispositivos Electrónicos Vestibles , Humanos , Teléfono Inteligente , Estudios Transversales , Trastorno Depresivo Mayor/diagnóstico , Estudios RetrospectivosRESUMEN
BACKGROUND: Speech contains neuromuscular, physiological and cognitive components, and so is a potential biomarker of mental disorders. Previous studies indicate that speaking rate and pausing are associated with major depressive disorder (MDD). However, results are inconclusive as many studies are small and underpowered and do not include clinical samples. These studies have also been unilingual and use speech collected in controlled settings. If speech markers are to help understand the onset and progress of MDD, we need to uncover markers that are robust to language and establish the strength of associations in real-world data. METHODS: We collected speech data in 585 participants with a history of MDD in the United Kingdom, Spain, and Netherlands as part of the RADAR-MDD study. Participants recorded their speech via smartphones every two weeks for 18 months. Linear mixed models were used to estimate the strength of specific markers of depression from a set of 28 speech features. RESULTS: Increased depressive symptoms were associated with speech rate, articulation rate and intensity of speech elicited from a scripted task. These features had consistently stronger effect sizes than pauses. LIMITATIONS: Our findings are derived at the cohort level so may have limited impact on identifying intra-individual speech changes associated with changes in symptom severity. The analysis of features averaged over the entire recording may have underestimated the importance of some features. CONCLUSIONS: Participants with more severe depressive symptoms spoke more slowly and quietly. Our findings are from a real-world, multilingual, clinical dataset so represent a step-change in the usefulness of speech as a digital phenotype of MDD.
Asunto(s)
Trastorno Depresivo Mayor , Habla , Humanos , Trastorno Depresivo Mayor/diagnóstico , Depresión , Lenguaje , IndividualidadRESUMEN
The present study analyzes the effects of each containment phase of the first COVID-19 wave on depression levels in a cohort of 121 adults with a history of major depressive disorder (MDD) from Catalonia recruited from 1 November 2019, to 16 October 2020. This analysis is part of the Remote Assessment of Disease and Relapse-MDD (RADAR-MDD) study. Depression was evaluated with the Patient Health Questionnaire-8 (PHQ-8), and anxiety was evaluated with the Generalized Anxiety Disorder-7 (GAD-7). Depression's levels were explored across the phases (pre-lockdown, lockdown, and four post-lockdown phases) according to the restrictions of Spanish/Catalan governments. Then, a mixed model was fitted to estimate how depression varied over the phases. A significant rise in depression severity was found during the lockdown and phase 0 (early post-lockdown), compared with the pre-lockdown. Those with low pre-lockdown depression experienced an increase in depression severity during the "new normality", while those with high pre-lockdown depression decreased compared with the pre-lockdown. These findings suggest that COVID-19 restrictions affected the depression level depending on their pre-lockdown depression severity. Individuals with low levels of depression are more reactive to external stimuli than those with more severe depression, so the lockdown may have worse detrimental effects on them.
Asunto(s)
COVID-19 , Trastorno Depresivo Mayor , Adulto , Humanos , COVID-19/epidemiología , Trastorno Depresivo Mayor/epidemiología , SARS-CoV-2 , Estudios Longitudinales , España/epidemiología , Control de Enfermedades Transmisibles , Ansiedad , DepresiónRESUMEN
Recent growth in digital technologies has enabled the recruitment and monitoring of large and diverse populations in remote health studies. However, the generalizability of inference drawn from remotely collected health data could be severely impacted by uneven participant engagement and attrition over the course of the study. We report findings on long-term participant retention and engagement patterns in a large multinational observational digital study for depression containing active (surveys) and passive sensor data collected via Android smartphones, and Fitbit devices from 614 participants for up to 2 years. Majority of participants (67.6%) continued to remain engaged in the study after 43 weeks. Unsupervised clustering of participants' study apps and Fitbit usage data showed 3 distinct engagement subgroups for each data stream. We found: (i) the least engaged group had the highest depression severity (4 PHQ8 points higher) across all data streams; (ii) the least engaged group (completed 4 bi-weekly surveys) took significantly longer to respond to survey notifications (3.8 h more) and were 5 years younger compared to the most engaged group (completed 20 bi-weekly surveys); and (iii) a considerable proportion (44.6%) of the participants who stopped completing surveys after 8 weeks continued to share passive Fitbit data for significantly longer (average 42 weeks). Additionally, multivariate survival models showed participants' age, ownership and brand of smartphones, and recruitment sites to be associated with retention in the study. Together these findings could inform the design of future digital health studies to enable equitable and balanced data collection from diverse populations.
RESUMEN
BACKGROUND: The study investigated the psychometric properties of the Community, Assessment of Psychic Experiences (CAPE-42), a self-report instrument in Indians. METHOD: CAPE-42 was translated in Hindi and tested on 312 Indian adults recruited online and through paper-pencil assessment. Confirmatory factor analysis (CFA) was employed to establish the factor structure of the positive, negative and depressive dimensions of CAPE-42: the bifactor model was tested to evaluate whether items converge into a major single factor defining psychotic-proneness in individuals. Latent class analysis (LCA) was conducted to identify subgroups with a different endorsement of subclinical psychotic symptoms. , RESULTS: CAPE-Hindi showed good reliability (Cronbach's alpha>0.80). CFA confirmed, a good fit for the bifactor model, factor loading was acceptable for all items in the general factor (Omega-h =0.83) and explained the primary variance of the subscales. Residual variance was explained by the positive, negative and depressive factors (Omega H =0.33, 0.04 and 0.12, respectively). LCA identified three classes traceable, to the three dimensions; a low endorsement group (n = 155; 50 %); a less consistent, group with endorsement on positive and depressive items (n = 117; 38 %), and a high, endorsement group (n = 40;13 %). CONCLUSION: Hindi CAPE-42 showed good reliability and factorial validity.
Asunto(s)
Trastornos Psicóticos , Humanos , Adulto , Reproducibilidad de los Resultados , Encuestas y Cuestionarios , Trastornos Psicóticos/diagnóstico , Psicometría , AutoinformeRESUMEN
BACKGROUND: Remote measurement technologies (RMTs) have the potential to revolutionize major depressive disorder (MDD) disease management by offering the ability to assess, monitor, and predict symptom changes. However, the promise of RMT data depends heavily on sustained user engagement over extended periods. In this paper, we report a longitudinal qualitative study of the subjective experience of people with MDD engaging with RMTs to provide insight into system usability and user experience and to provide the basis for future promotion of RMT use in research and clinical practice. OBJECTIVE: We aimed to understand the subjective experience of long-term engagement with RMTs using qualitative data collected in a longitudinal study of RMTs for monitoring MDD. The objectives were to explore the key themes associated with long-term RMT use and to identify recommendations for future system engagement. METHODS: In this multisite, longitudinal qualitative research study, 124 semistructured interviews were conducted with 99 participants across the United Kingdom, Spain, and the Netherlands at 3-month, 12-month, and 24-month time points during a study exploring RMT use (the Remote Assessment of Disease and Relapse-Major Depressive Disorder study). Data were analyzed using thematic analysis, and interviews were audio recorded, transcribed, and coded in the native language, with the resulting quotes translated into English. RESULTS: There were 5 main themes regarding the subjective experience of long-term RMT use: research-related factors, the utility of RMTs for self-management, technology-related factors, clinical factors, and system amendments and additions. CONCLUSIONS: The subjective experience of long-term RMT use can be considered from 2 main perspectives: experiential factors (how participants construct their experience of engaging with RMTs) and system-related factors (direct engagement with the technologies). A set of recommendations based on these strands are proposed for both future research and the real-world implementation of RMTs into clinical practice. Future exploration of experiential engagement with RMTs will be key to the successful use of RMTs in clinical care.
RESUMEN
BACKGROUND: Changes in lifestyle, finances and work status during COVID-19 lockdowns may have led to biopsychosocial changes in people with pre-existing vulnerabilities such as Major Depressive Disorders (MDDs) and Multiple Sclerosis (MS). METHODS: Data were collected as a part of the RADAR-CNS (Remote Assessment of Disease and Relapse-Central Nervous System) program. We analyzed the following data from long-term participants in a decentralized multinational study: symptoms of depression, heart rate (HR) during the day and night; social activity; sedentary state, steps and physical activity of varying intensity. Linear mixed-effects regression analyses with repeated measures were fitted to assess the changes among three time periods (pre, during and post-lockdown) across the groups, adjusting for depression severity before the pandemic and gender. RESULTS: Participants with MDDs (N = 255) and MS (N = 214) were included in the analyses. Overall, depressive symptoms remained stable across the three periods in both groups. A lower mean HR and HR variation were observed between pre and during lockdown during the day for MDDs and during the night for MS. HR variation during rest periods also decreased between pre- and post-lockdown in both clinical conditions. We observed a reduction in physical activity for MDDs and MS upon the introduction of lockdowns. The group with MDDs exhibited a net increase in social interaction via social network apps over the three periods. CONCLUSIONS: Behavioral responses to the lockdown measured by social activity, physical activity and HR may reflect changes in stress in people with MDDs and MS. Remote technology monitoring might promptly activate an early warning of physical and social alterations in these stressful situations. Future studies must explore how stress does or does not impact depression severity.
RESUMEN
BACKGROUND: Gait is an essential manifestation of depression. However, the gait characteristics of daily walking and their relationships with depression have yet to be fully explored. OBJECTIVE: The aim of this study was to explore associations between depression symptom severity and daily-life gait characteristics derived from acceleration signals in real-world settings. METHODS: We used two ambulatory data sets (N=71 and N=215) with acceleration signals collected by wearable devices and mobile phones, respectively. We extracted 12 daily-life gait features to describe the distribution and variance of gait cadence and force over a long-term period. Spearman coefficients and linear mixed-effects models were used to explore the associations between daily-life gait features and depression symptom severity measured by the 15-item Geriatric Depression Scale (GDS-15) and 8-item Patient Health Questionnaire (PHQ-8) self-reported questionnaires. The likelihood-ratio (LR) test was used to test whether daily-life gait features could provide additional information relative to the laboratory gait features. RESULTS: Higher depression symptom severity was significantly associated with lower gait cadence of high-performance walking (segments with faster walking speed) over a long-term period in both data sets. The linear regression model with long-term daily-life gait features (R2=0.30) fitted depression scores significantly better (LR test P=.001) than the model with only laboratory gait features (R2=0.06). CONCLUSIONS: This study indicated that the significant links between daily-life walking characteristics and depression symptom severity could be captured by both wearable devices and mobile phones. The daily-life gait patterns could provide additional information for predicting depression symptom severity relative to laboratory walking. These findings may contribute to developing clinical tools to remotely monitor mental health in real-world settings.
Asunto(s)
Depresión , Marcha , Aceleración , Anciano , Humanos , Estudios Retrospectivos , CaminataRESUMEN
The use of remote measurement technologies (RMTs) across mobile health (mHealth) studies is becoming popular, given their potential for providing rich data on symptom change and indicators of future state in recurrent conditions such as major depressive disorder (MDD). Understanding recruitment into RMT research is fundamental for improving historically small sample sizes, reducing loss of statistical power, and ultimately producing results worthy of clinical implementation. There is a need for the standardisation of best practices for successful recruitment into RMT research. The current paper reviews lessons learned from recruitment into the Remote Assessment of Disease and Relapse- Major Depressive Disorder (RADAR-MDD) study, a large-scale, multi-site prospective cohort study using RMT to explore the clinical course of people with depression across the UK, the Netherlands, and Spain. More specifically, the paper reflects on key experiences from the UK site and consolidates these into four key recruitment strategies, alongside a review of barriers to recruitment. Finally, the strategies and barriers outlined are combined into a model of lessons learned. This work provides a foundation for future RMT study design, recruitment and evaluation.
RESUMEN
BACKGROUND: The Reading the Mind in the Eyes Test (RMET) is listed in the National Institute of Mental Health's Research Domain Criteria as a tool apt to measure the understanding of others' mental states. People diagnosed with anorexia nervosa (AN) showed poorer performances on the RMET than healthy controls. Less data are available concerning other eating disorders. METHODS: Systematic review of four major databases from inception to July 15, 2021 following the PRISMA guidelines. Meta-analysis of cross-sectional observational studies comparing the scores of the RMET between patients with eating disorders and age- and-gender matched control groups. RESULTS: Out of 21 studies, we retrieved 29 independent samples of patients diagnosed with an eating disorder. Patients with active AN (n = 580) showed worse performances on the RMET than controls (n = 1019). Year of publication accounted for 61% of the (substantial: I2 = 81%) heterogeneity in the meta-analysis. Earlier studies were more likely to find worse performances on the RMET of patients with active AN than later studies. Patients with bulimia nervosa (n = 185) performed poorly as compared to controls (n = 249), but the results were not statistically significant on the random-effect model. Obese patients with binge-eating disorder (n = 54) did not differ on the RMET from obese controls (n = 52). Patients with eating disorder not otherwise specified (n = 57) showed minimal differences compared to controls (n = 96). Study quality was good in six studies only. CONCLUSIONS: Patients with eating disorders do not suffer from an impaired understanding of others' mental states, except for a still-to-be-identified subgroup of patients with active AN. LEVEL OF EVIDENCE: I, systematic review and meta-analysis.
Asunto(s)
Anorexia Nerviosa , Bulimia Nerviosa , Trastornos de Alimentación y de la Ingestión de Alimentos , Anorexia Nerviosa/psicología , Bulimia Nerviosa/psicología , Cognición , Estudios Transversales , Humanos , ObesidadRESUMEN
BACKGROUND: The mobility of an individual measured by phone-collected location data has been found to be associated with depression; however, the longitudinal relationships (the temporal direction of relationships) between depressive symptom severity and phone-measured mobility have yet to be fully explored. OBJECTIVE: We aimed to explore the relationships and the direction of the relationships between depressive symptom severity and phone-measured mobility over time. METHODS: Data used in this paper came from a major EU program, called the Remote Assessment of Disease and Relapse-Major Depressive Disorder, which was conducted in 3 European countries. Depressive symptom severity was measured with the 8-item Patient Health Questionnaire (PHQ-8) through mobile phones every 2 weeks. Participants' location data were recorded by GPS and network sensors in mobile phones every 10 minutes, and 11 mobility features were extracted from location data for the 2 weeks prior to the PHQ-8 assessment. Dynamic structural equation modeling was used to explore the longitudinal relationships between depressive symptom severity and phone-measured mobility. RESULTS: This study included 2341 PHQ-8 records and corresponding phone-collected location data from 290 participants (age: median 50.0 IQR 34.0, 59.0) years; of whom 215 (74.1%) were female, and 149 (51.4%) were employed. Significant negative correlations were found between depressive symptom severity and phone-measured mobility, and these correlations were more significant at the within-individual level than the between-individual level. For the direction of relationships over time, Homestay (time at home) (φ=0.09, P=.01), Location Entropy (time distribution on different locations) (φ=-0.04, P=.02), and Residential Location Count (reflecting traveling) (φ=0.05, P=.02) were significantly correlated with the subsequent changes in the PHQ-8 score, while changes in the PHQ-8 score significantly affected (φ=-0.07, P<.001) the subsequent periodicity of mobility. CONCLUSIONS: Several phone-derived mobility features have the potential to predict future depression, which may provide support for future clinical applications, relapse prevention, and remote mental health monitoring practices in real-world settings.
RESUMEN
BACKGROUND: Major Depressive Disorder (MDD) is prevalent, often chronic, and requires ongoing monitoring of symptoms to track response to treatment and identify early indicators of relapse. Remote Measurement Technologies (RMT) provide an opportunity to transform the measurement and management of MDD, via data collected from inbuilt smartphone sensors and wearable devices alongside app-based questionnaires and tasks. A key question for the field is the extent to which participants can adhere to research protocols and the completeness of data collected. We aimed to describe drop out and data completeness in a naturalistic multimodal longitudinal RMT study, in people with a history of recurrent MDD. We further aimed to determine whether those experiencing a depressive relapse at baseline contributed less complete data. METHODS: Remote Assessment of Disease and Relapse - Major Depressive Disorder (RADAR-MDD) is a multi-centre, prospective observational cohort study conducted as part of the Remote Assessment of Disease and Relapse - Central Nervous System (RADAR-CNS) program. People with a history of MDD were provided with a wrist-worn wearable device, and smartphone apps designed to: a) collect data from smartphone sensors; and b) deliver questionnaires, speech tasks, and cognitive assessments. Participants were followed-up for a minimum of 11 months and maximum of 24 months. RESULTS: Individuals with a history of MDD (n = 623) were enrolled in the study,. We report 80% completion rates for primary outcome assessments across all follow-up timepoints. 79.8% of people participated for the maximum amount of time available and 20.2% withdrew prematurely. We found no evidence of an association between the severity of depression symptoms at baseline and the availability of data. In total, 110 participants had > 50% data available across all data types. CONCLUSIONS: RADAR-MDD is the largest multimodal RMT study in the field of mental health. Here, we have shown that collecting RMT data from a clinical population is feasible. We found comparable levels of data availability in active and passive forms of data collection, demonstrating that both are feasible in this patient group.
Asunto(s)
Trastorno Depresivo Mayor , Aplicaciones Móviles , Enfermedad Crónica , Trastorno Depresivo Mayor/diagnóstico , Trastorno Depresivo Mayor/epidemiología , Humanos , Estudios Prospectivos , Recurrencia , Teléfono InteligenteRESUMEN
BACKGROUND: Most smartphones and wearables are currently equipped with location sensing (using GPS and mobile network information), which enables continuous location tracking of their users. Several studies have reported that various mobility metrics, as well as home stay, that is, the amount of time an individual spends at home in a day, are associated with symptom severity in people with major depressive disorder (MDD). Owing to the use of small and homogeneous cohorts of participants, it is uncertain whether the findings reported in those studies generalize to a broader population of individuals with MDD symptoms. OBJECTIVE: The objective of this study is to examine the relationship between the overall severity of depressive symptoms, as assessed by the 8-item Patient Health Questionnaire, and median daily home stay over the 2 weeks preceding the completion of a questionnaire in individuals with MDD. METHODS: We used questionnaire and geolocation data of 164 participants with MDD collected in the observational Remote Assessment of Disease and Relapse-Major Depressive Disorder study. The participants were recruited from three study sites: King's College London in the United Kingdom (109/164, 66.5%); Vrije Universiteit Medisch Centrum in Amsterdam, the Netherlands (17/164, 10.4%); and Centro de Investigación Biomédica en Red in Barcelona, Spain (38/164, 23.2%). We used a linear regression model and a resampling technique (n=100 draws) to investigate the relationship between home stay and the overall severity of MDD symptoms. Participant age at enrollment, gender, occupational status, and geolocation data quality metrics were included in the model as additional explanatory variables. The 95% 2-sided CIs were used to evaluate the significance of model variables. RESULTS: Participant age and severity of MDD symptoms were found to be significantly related to home stay, with older (95% CI 0.161-0.325) and more severely affected individuals (95% CI 0.015-0.184) spending more time at home. The association between home stay and symptoms severity appeared to be stronger on weekdays (95% CI 0.023-0.178, median 0.098; home stay: 25th-75th percentiles 17.8-22.8, median 20.9 hours a day) than on weekends (95% CI -0.079 to 0.149, median 0.052; home stay: 25th-75th percentiles 19.7-23.5, median 22.3 hours a day). Furthermore, we found a significant modulation of home stay by occupational status, with employment reducing home stay (employed participants: 25th-75th percentiles 16.1-22.1, median 19.7 hours a day; unemployed participants: 25th-75th percentiles 20.4-23.5, median 22.6 hours a day). CONCLUSIONS: Our findings suggest that home stay is associated with symptom severity in MDD and demonstrate the importance of accounting for confounding factors in future studies. In addition, they illustrate that passive sensing of individuals with depression is feasible and could provide clinically relevant information to monitor the course of illness in patients with MDD.
Asunto(s)
Trastorno Depresivo Mayor , Trastorno Depresivo Mayor/diagnóstico , Trastorno Depresivo Mayor/epidemiología , Humanos , Recurrencia , Teléfono Inteligente , Encuestas y Cuestionarios , Reino UnidoRESUMEN
Research on the multidimensionality of hallucination-like experiences (HLEs) can contribute to the study of psychotic risk. The Launay-Slade Hallucinations Scale-Extended (LSHS-E) is one of the most widely used tools for research in HLEs, but the correspondence of its paper and online formats has not been established yet. Therefore, we studied the factorial structure and measurement invariance between online and paper-and-pencil versions of LSHS-E in a Chilean population. Two thousand eighty-six completed the online version, and 578 students completed the original paper-and-pencil version. After matching by sex, age, civil status, alcohol and cannabis consumption, and psychiatric treatment received, we selected 543 students from each group. We conducted a confirmatory factor analysis of a four-factor model and a hierarchical model that included a general predisposition to hallucination, explaining the strong relationship between the different types of hallucinations. Both models showed a good fit to the data and were invariant between paper-and-pencil and online versions. Also, the LSHS-E has good reliability in both online and paper-and-pencil formats. This study shows that the online LSHS-E possesses psychometric properties equivalent to the paper-and-pencil version. It should be considered a valuable tool for research of psychosis determinants in the COVID-19 era. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12144-021-02497-7.
RESUMEN
BACKGROUND: The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes a clinical illness Covid-19, has had a major impact on mental health globally. Those diagnosed with major depressive disorder (MDD) may be negatively impacted by the global pandemic due to social isolation, feelings of loneliness or lack of access to care. This study seeks to assess the impact of the 1st lockdown - pre-, during and post - in adults with a recent history of MDD across multiple centres. METHODS: This study is a secondary analysis of an on-going cohort study, RADAR-MDD project, a multi-centre study examining the use of remote measurement technology (RMT) in monitoring MDD. Self-reported questionnaire and passive data streams were analysed from participants who had joined the project prior to 1st December 2019 and had completed Patient Health and Self-esteem Questionnaires during the pandemic (n = 252). We used mixed models for repeated measures to estimate trajectories of depressive symptoms, self-esteem, and sleep duration. RESULTS: In our sample of 252 participants, 48% (n = 121) had clinically relevant depressive symptoms shortly before the pandemic. For the sample as a whole, we found no evidence that depressive symptoms or self-esteem changed between pre-, during- and post-lockdown. However, we found evidence that mean sleep duration (in minutes) decreased significantly between during- and post- lockdown (- 12.16; 95% CI - 18.39 to - 5.92; p < 0.001). We also found that those experiencing clinically relevant depressive symptoms shortly before the pandemic showed a decrease in depressive symptoms, self-esteem and sleep duration between pre- and during- lockdown (interaction p = 0.047, p = 0.045 and p < 0.001, respectively) as compared to those who were not. CONCLUSIONS: We identified changes in depressive symptoms and sleep duration over the course of lockdown, some of which varied according to whether participants were experiencing clinically relevant depressive symptoms shortly prior to the pandemic. However, the results of this study suggest that those with MDD do not experience a significant worsening in symptoms during the first months of the Covid - 19 pandemic.
Asunto(s)
COVID-19 , Trastorno Depresivo Mayor , Adulto , Estudios de Cohortes , Control de Enfermedades Transmisibles , Depresión , Trastorno Depresivo Mayor/epidemiología , Humanos , SARS-CoV-2 , TecnologíaRESUMEN
BACKGROUND: Research in mental health has found associations between depression and individuals' behaviors and statuses, such as social connections and interactions, working status, mobility, and social isolation and loneliness. These behaviors and statuses can be approximated by the nearby Bluetooth device count (NBDC) detected by Bluetooth sensors in mobile phones. OBJECTIVE: This study aimed to explore the value of the NBDC data in predicting depressive symptom severity as measured via the 8-item Patient Health Questionnaire (PHQ-8). METHODS: The data used in this paper included 2886 biweekly PHQ-8 records collected from 316 participants recruited from three study sites in the Netherlands, Spain, and the United Kingdom as part of the EU Remote Assessment of Disease and Relapse-Central Nervous System (RADAR-CNS) study. From the NBDC data 2 weeks prior to each PHQ-8 score, we extracted 49 Bluetooth features, including statistical features and nonlinear features for measuring the periodicity and regularity of individuals' life rhythms. Linear mixed-effect models were used to explore associations between Bluetooth features and the PHQ-8 score. We then applied hierarchical Bayesian linear regression models to predict the PHQ-8 score from the extracted Bluetooth features. RESULTS: A number of significant associations were found between Bluetooth features and depressive symptom severity. Generally speaking, along with depressive symptom worsening, one or more of the following changes were found in the preceding 2 weeks of the NBDC data: (1) the amount decreased, (2) the variance decreased, (3) the periodicity (especially the circadian rhythm) decreased, and (4) the NBDC sequence became more irregular. Compared with commonly used machine learning models, the proposed hierarchical Bayesian linear regression model achieved the best prediction metrics (R2=0.526) and a root mean squared error (RMSE) of 3.891. Bluetooth features can explain an extra 18.8% of the variance in the PHQ-8 score relative to the baseline model without Bluetooth features (R2=0.338, RMSE=4.547). CONCLUSIONS: Our statistical results indicate that the NBDC data have the potential to reflect changes in individuals' behaviors and statuses concurrent with the changes in the depressive state. The prediction results demonstrate that the NBDC data have a significant value in predicting depressive symptom severity. These findings may have utility for the mental health monitoring practice in real-world settings.