RESUMEN
Traumatic brain injury (TBI) is the leading cause of death and disability due to injury worldwide. Extracellular matrix (ECM) remodeling is known to significantly contribute to TBI pathophysiology. Glycosaminoglycans, which are long-chain, variably sulfated polysaccharides abundant within the ECM, have previously been shown to be substantially altered after TBI. In this study, we sought to delineate the dynamics of glycosaminoglycan alterations after TBI and discover the precise biologic processes responsible for observed glycosaminoglycan changes after injury. We performed state-of-the art mass spectrometry on brain tissues isolated from mice after TBI or craniotomy-alone. We observed dynamic changes in glycosaminoglycans at Day 1 and 7 post-TBI, with heparan sulfate, chondroitin sulfate, and hyaluronan remaining significantly increased after a week vis-à-vis craniotomy-alone tissues. We did not observe appreciable changes in circulating glycosaminoglycans in mice after experimental TBI compared to craniotomy-alone nor in patients with TBI and severe polytrauma compared to control patients with mild injuries, suggesting increases in injury site glycosaminoglycans are driven by local synthesis. We subsequently performed an unbiased whole genome transcriptomics analysis on mouse brain tissues 7 days post-TBI and discovered a significant induction of hyaluronan synthase 2, glypican-3, and decorin. The functional role of decorin after injury was further examined through multimodal behavioral testing comparing wild-type and Dcn-/- mice. We discovered that genetic ablation of Dcn led to an overall negative effect of TBI on function, exacerbating motor impairments after TBI. Collectively, our results provide a spatiotemporal characterization of post-TBI glycosaminoglycan alterations in the brain ECM and support an important adaptive role for decorin upregulation after TBI.
Asunto(s)
Lesiones Traumáticas del Encéfalo , Glicosaminoglicanos , Animales , Humanos , Ratones , Lesiones Traumáticas del Encéfalo/genética , Sulfatos de Condroitina , Decorina/genética , Proteínas de la Matriz Extracelular , Glicosaminoglicanos/químicaRESUMEN
The brain and spinal cord constitute the central nervous system (CNS), which when injured, can be exceedingly devastating. The mechanistic roles of proteoglycans (PGs) and their glycosaminoglycan (GAG) side chains in such injuries have been extensively studied. CNS injury immediately alters endothelial and extracellular matrix (ECM) PGs and GAGs. Subsequently, these alterations contribute to acute injury, postinjury fibrosis, and postinjury repair. These effects are central to the pathophysiology of CNS injury. This review focuses on the importance of PGs and GAGs in multiple forms of injury including traumatic brain injury, spinal cord injury, and stroke. We highlight the causes and consequences of degradation of the PG and GAG-enriched endothelial glycocalyx in early injury and discuss the pleiotropic roles of PGs in neuroinflammation. We subsequently evaluate the dualistic effects of PGs on recovery: both PG/GAG-mediated inhibition and facilitation of repair. We then report promising therapeutic strategies that may prove effective for repair of CNS injury including PG receptor inhibition, delivery of endogenous, pro-repair PGs and GAGs, and direct degradation of pathological GAGs. Finally, we discuss the importance of two PG- and GAG-containing ECM structures (synapses and perineuronal nets) in CNS injury and recovery.