Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Transl Psychiatry ; 12(1): 497, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36450713

RESUMEN

Epidemiological studies indicate a bidirectional association between metabolic disturbances, including obesity and related pathological states, and mood disorders, most prominently major depression. However, the biological mechanisms mediating the comorbid relationship between the deranged metabolic and mood states remain incompletely understood. Here, we tested the hypothesis that the enhanced activation of brown fat tissue (BAT), known to beneficially regulate obesity and accompanying dysfunctional metabolic states, is also paralleled by an alteration of affective behaviour. We used upstream stimulatory factor 1 (USF-1) knock-out (KO) mice as a genetic model of constitutively activated BAT and positive cardiometabolic traits and found a reduction of depression-like and anxiety-like behaviours associated with USF-1 deficiency. Surgical removal of interscapular BAT did not impact the behavioural phenotype of USF-1 KO mice. Further, the absence of USF-1 did not lead to alterations of adult hippocampal neural progenitor cell proliferation, differentiation, or survival. RNA-seq analysis characterised the molecular signature of USF-1 deficiency in the hippocampus and revealed a significant increase in the expression of several members of the X-linked lymphocyte-regulated (xlr) genes, including xlr3b and xlr4b. Xlr genes are the mouse orthologues of the human FAM9 gene family and are implicated in the regulation of dendritic branching, dendritic spine number and morphology. The transcriptional changes were associated with morphological alterations in hippocampal neurons, manifested in reduced dendritic length and complexity in USF-1 KO mice. Collectively these data suggest that the metabolic regulator USF-1 is involved in the control of affective behaviour in mice and that this modulation of mood states is unrelated to USF-1-dependent BAT activation, but reflected in structural changes in the brain.


Asunto(s)
Encéfalo , Trastorno Depresivo Mayor , Adulto , Humanos , Animales , Ratones , Ratones Noqueados , Trastornos de Ansiedad , Hipocampo
2.
Mol Psychiatry ; 26(7): 2886-2899, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33046834

RESUMEN

The signal transducer and activator of transcription 3 (STAT3) signalling pathway is activated through phosphorylation by Janus kinases in response to a diverse set of immunogenic and non-immunogenic triggers. Several distinct lines of evidence propose an intricate involvement of STAT3 in neural function relevant to behaviour in health and disease. However, in part due to the pleiotropic effects resulting from its DNA binding activity and the consequent regulation of expression of a variety of genes with context-dependent cellular consequences, the precise nature of STAT3 involvement in the neural mechanisms underlying psychopathology remains incompletely understood. Here, we focused on the midbrain serotonergic system, a central hub for the regulation of emotions, to examine the relevance of STAT3 signalling for emotional behaviour in mice by selectively knocking down raphe STAT3 expression using germline genetic (STAT3 KO) and viral-mediated approaches. Mice lacking serotonergic STAT3 presented with reduced negative behavioural reactivity and a blunted response to the sensitising effects of amphetamine, alongside alterations in midbrain neuronal firing activity of serotonergic neurons and transcriptional control of gene networks relevant for neuropsychiatric disorders. Viral knockdown of dorsal raphe (DR) STAT3 phenocopied the behavioural alterations of STAT3 KO mice, excluding a developmentally determined effect and suggesting that disruption of STAT3 signalling in the DR of adult mice is sufficient for the manifestation of behavioural traits relevant to psychopathology. Collectively, these results suggest DR STAT3 as a molecular gate for the control of behavioural reactivity, constituting a mechanistic link between the upstream activators of STAT3, serotonergic neurotransmission and psychopathology.


Asunto(s)
Núcleo Dorsal del Rafe , Redes Reguladoras de Genes , Trastornos Mentales , Factor de Transcripción STAT3 , Animales , Núcleo Dorsal del Rafe/metabolismo , Ratones , Fosforilación , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
3.
Psychoneuroendocrinology ; 111: 104480, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31707294

RESUMEN

The highly conserved transcription factor LIM-only 3 (Lmo3) is involved in important neurodevelopmental processes in several brain areas including the amygdala, a central hub for the generation and regulation of emotions. Accordingly, a role for Lmo3 in the behavioral responses to ethanol and in the display of anxiety-like behavior in mice has been demonstrated while the potential involvement of Lmo3 in the control of mood-related behavior has not yet been explored. Using a mouse model of Lmo3 depletion (Lmo3z), we here report that genetic Lmo3 deficiency is associated with altered performance in behavioral paradigms assessing anxiety-like and depression-like traits and additionally accompanied by impairments in learned fear. Importantly, long-term potentiation (LTP) in the basolateral amygdala (BLA), a proposed cellular correlate of fear learning, is impaired in Lmo3z mice. RNA-Seq analysis of BLA tissue and gene set enrichment analysis (GSEA) of differentially expressed genes in Lmo3z mice reveals a significant overlap between genes overexpressed in Lmo3z mice and those enriched in the amygdala of a cohort of patients suffering from major depressive disorder. Consequently, we propose that Lmo3 may play a role in the regulation of gene networks that are relevant to the regulation of emotions. Future work may aid to further explore the role of Lmo3 in the pathophysiology of affective disorders and its genetic foundations.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Amígdala del Cerebelo/metabolismo , Proteínas con Dominio LIM/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Afecto , Amígdala del Cerebelo/fisiología , Animales , Ansiedad/genética , Trastornos de Ansiedad/genética , Conducta Animal/fisiología , Encéfalo/metabolismo , Depresión/genética , Trastorno Depresivo Mayor/genética , Miedo/fisiología , Femenino , Proteínas con Dominio LIM/metabolismo , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Ratones Noqueados , Factores de Transcripción/genética
4.
Brain Behav Immun ; 83: 56-67, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31526827

RESUMEN

Gestational infection constitutes a risk factor for the occurrence of psychiatric disorders in the offspring. Activation of the maternal immune system (MIA) with subsequent impact on the development of the fetal brain is considered to form the neurobiological basis for aberrant neural wiring and the psychiatric manifestations later in offspring life. The examination of validated animal models constitutes a premier resource for the investigation of the neural underpinnings. Here we used a mouse model of MIA based upon systemic treatment of pregnant mice with Poly(I:C) (polyriboinosinic-polyribocytidilic acid), for the unbiased and comprehensive analysis of the impact of MIA on adult offspring brain activity, morphometry, connectivity and function by a magnetic resonance imaging (MRI) approach. Overall lower neural activity, smaller brain regions and less effective fiber structure were observed for Poly(I:C) offspring compared to the control group. The corpus callosum was significantly smaller and presented with a disruption in myelin/ fiber structure in the MIA progeny. Subsequent resting-state functional MRI experiments demonstrated a paralleling dysfunctional interhemispheric connectivity. Additionally, while the overall flow of information was intact, cortico-limbic connectivity was hampered and limbic circuits revealed hyperconnectivity in Poly(I:C) offspring. Our study sheds new light on the impact of maternal infection during pregnancy on the offspring brain and identifies aberrant resting-state functional connectivity patterns as possible correlates of the behavioral phenotype with relevance for psychiatric disorders.


Asunto(s)
Conducta Animal , Trastornos Mentales/etiología , Trastornos Mentales/inmunología , Embarazo/inmunología , Efectos Tardíos de la Exposición Prenatal/inmunología , Efectos Tardíos de la Exposición Prenatal/psicología , Animales , Encéfalo/diagnóstico por imagen , Modelos Animales de Enfermedad , Femenino , Ratones , Poli I-C/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...