Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Nat Biomed Eng ; 5(9): 983-997, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34616050

RESUMEN

Oral formulations of insulin are typically designed to improve its intestinal absorption and increase its blood bioavailability. Here we show that polymerized ursodeoxycholic acid, selected from a panel of bile-acid polymers and formulated into nanoparticles for the oral delivery of insulin, restored blood-glucose levels in mice and pigs with established type 1 diabetes. The nanoparticles functioned as a protective insulin carrier and as a high-avidity bile-acid-receptor agonist, increased the intestinal absorption of insulin, polarized intestinal macrophages towards the M2 phenotype, and preferentially accumulated in the pancreas of the mice, binding to the islet-cell bile-acid membrane receptor TGR5 with high avidity and activating the secretion of glucagon-like peptide and of endogenous insulin. In the mice, the nanoparticles also reversed inflammation, restored metabolic functions and extended animal survival. When encapsulating rapamycin, they delayed the onset of diabetes in mice with chemically induced pancreatic inflammation. The metabolic and immunomodulatory functions of ingestible bile-acid-polymer nanocarriers may offer translational opportunities for the prevention and treatment of type 1 diabetes.


Asunto(s)
Ácidos y Sales Biliares , Diabetes Mellitus Tipo 1 , Animales , Bilis , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Péptido 1 Similar al Glucagón , Insulina , Ratones , Polímeros , Receptores Acoplados a Proteínas G , Sirolimus , Porcinos
3.
Acad Med ; 94(4): 528-534, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30520807

RESUMEN

The process of translating academic biomedical advances into clinical care improvements is difficult, risky, expensive, and poorly understood. Notably, many clinicians who identify health care problems do not have the time or expertise to solve the problems, and many academic researchers are unaware of important gaps in clinical care to which their expertise may apply.Recognizing an opportunity to connect people who can identify health care problems with those who can solve them, the Yale Center for Biomedical Innovation and Technology (CBIT) was established in 2014 to educate and enhance the impact of health care innovators. The authors review other health care innovation centers and describe best practices borrowed by Yale CBIT, which tailored its activities and approach to its unique ecosystem.In four years, Yale CBIT has affected over 3,000 people and established a health care innovation cycle as an efficient strategy to guide translational research. Yale CBIT has created or supported graduate and undergraduate courses, clinical immersion programs for industry partners, and large health care hackathon events. Over 200 projects have been submitted to CBIT for mentorship, and some of those projects have been commercialized and raised millions of dollars of follow-on funding.The authors present Yale CBIT as one model of accelerating the impact of academic medicine on clinical practice and outcomes. The project advising strategy is intended to be a template to maximize the efficiency of biomedical innovation and ultimately improve the outcomes and experiences of future patients.


Asunto(s)
Éxito Académico , Tecnología Biomédica/organización & administración , Invenciones/tendencias , Tecnología Biomédica/tendencias , Humanos
4.
Methods Mol Biol ; 1530: 343-353, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28150213

RESUMEN

Artificial antigen-presenting cells (aAPCs) overcome many of the limitations of biologically based adoptive immunotherapy protocols. While these acellular systems can be designed with a variety of parameters, including material type, diameter, and proliferative signals for T cells, we outline methods to formulate and characterize a comprehensive polymeric microparticle aAPC platform. These aAPCs, which can be reproducibly fabricated in large quantities, efficiently stimulate antigen-specific T cell activation and proliferation by both paracrine cytokine signals and engagement of T cell surface proteins.


Asunto(s)
Presentación de Antígeno , Células Artificiales/inmunología , Inmunoterapia , Anticuerpos/química , Anticuerpos/inmunología , Células Presentadoras de Antígenos/inmunología , Avidina , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Antígenos de Histocompatibilidad/química , Antígenos de Histocompatibilidad/inmunología , Humanos , Inmunoterapia Adoptiva , Ácido Láctico/química , Microesferas , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Propiedades de Superficie , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
5.
Biomaterials ; 108: 168-76, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27636154

RESUMEN

Leishmania (Viannia) panamensis (L. (V.) panamensis) is a species of protozoan parasites that causes New World leishmaniasis, which is characterized by a hyper-inflammatory response. Current treatment strategies, mainly chemotherapeutic, are suboptimal due to adverse effects, long treatment regimens, and increasing drug resistance. Recently, immunotherapeutic approaches have shown promise in preclinical studies of leishmaniasis. As NPs may enable broad cellular immunomodulation through internalization in phagocytic and antigen-presenting cells, we tested the therapeutic efficacy of biodegradable NPs encapsulating a pathogen-associated molecular pattern (PAMP), CpG-rich oligonucleotide (CpG; NP-CpG), in mice infected with L. (V.) panamensis. NP-CpG treatment reduced lesion size and parasite burden, while neither free CpG nor empty NP showed therapeutic effects. NP-encapsulation led to CpG persistence at the site of infection along with an unexpected preferential cellular uptake by myeloid derived suppressor cells (MDSCs; CD11b(+)Ly6G(+)Ly6C(-)) as well as CD19(+) dendritic cells. This corresponded with the suppression of the ongoing immune response measured by the reduction of pathogenic cytokines IL-10 and IL-13, as well as IL-17 and IFNγ, in comparison to other treatment groups. As chronic inflammation is generally associated with the accumulation of MDSCs, this study may enable the rational design of cost-effective, safe, and scalable delivery systems for the treatment of inflammation-mediated diseases.


Asunto(s)
Citocinas/inmunología , Preparaciones de Acción Retardada/administración & dosificación , Factores Inmunológicos/administración & dosificación , Leishmaniasis/inmunología , Leishmaniasis/terapia , Nanopartículas/administración & dosificación , Animales , Preparaciones de Acción Retardada/química , Femenino , Factores Inmunológicos/química , Leishmania , Leishmaniasis/parasitología , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Nanopartículas/ultraestructura , Resultado del Tratamiento
6.
Biomaterials ; 97: 85-96, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27162077

RESUMEN

Antigen-presenting cells (APCs) sense microorganisms via pathogen-associated molecular patterns (PAMPs) by both extra- and intracellular Toll-like Receptors (TLRs), initiating immune responses against invading pathogens. Bacterial PAMPs include extracellular lipopolysaccharides and intracellular unmethylated CpG-rich oligodeoxynucleotides (CpG). We hypothesized that a biomimetic approach involving antigen-loaded nanoparticles (NP) displaying Monophosphoryl Lipid A (MPLA) and encapsulating CpG may function as an effective "artificial bacterial" biomimetic vaccine platform. This hypothesis was tested in vitro and in vivo using NP assembled from biodegradable poly(lactic-co-glycolic acid) (PLGA) polymer, surface-modified with MPLA, and loaded with CpG and model antigen Ovalbumin (OVA). First, CpG potency, characterized by cytokine profiles, titers, and antigen-specific T cell responses, was enhanced when CpG was encapsulated in NP compared to equivalent concentrations of surface-presented CpG, highlighting the importance of biomimetic presentation of PAMPs. Second, NP synergized surface-bound MPLA with encapsulated CpG in vitro and in vivo, inducing greater pro-inflammatory, antigen-specific T helper 1 (Th1)-skewed cellular and antibody-mediated responses compared to single PAMPs or soluble PAMP combinations. Importantly, NP co-presentation of CpG and MPLA was critical for CD8(+) T cell responses, as vaccination with a mixture of NP presenting either CpG or MPLA failed to induce cellular immunity. This work demonstrates a rational methodology for combining TLR ligands in a context-dependent manner for synergistic nanoparticulate vaccines.


Asunto(s)
Vacunas Bacterianas/inmunología , Materiales Biomiméticos/farmacología , Nanopartículas/química , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Animales , Antibacterianos/farmacología , Formación de Anticuerpos/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Humanos , Inmunidad Celular/efectos de los fármacos , Lípido A/análogos & derivados , Lípido A/química , Ratones Endogámicos C57BL , Oligodesoxirribonucleótidos/farmacología , Células TH1/efectos de los fármacos , Células TH1/inmunología , Receptores Toll-Like/metabolismo
7.
Trends Biotechnol ; 29(6): 294-306, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21459467

RESUMEN

Vaccine development has progressed significantly and has moved from whole microorganisms to subunit vaccines that contain only their antigenic proteins. Subunit vaccines are often less immunogenic than whole pathogens; therefore, adjuvants must amplify the immune response, ideally establishing both innate and adaptive immunity. Incorporation of antigens into biomaterials, such as liposomes and polymers, can achieve a desired vaccine response. The physical properties of these platforms can be easily manipulated, thus allowing for controlled delivery of immunostimulatory factors and presentation of pathogen-associated molecular patterns (PAMPs) that are targeted to specific immune cells. Targeting antigen to immune cells via PAMP-modified biomaterials is a new strategy to control the subsequent development of immunity and, in turn, effective vaccination. Here, we review the recent advances in both immunology and biomaterial engineering that have brought particulate-based vaccines to reality.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Materiales Biocompatibles/farmacología , Sistema Inmunológico/efectos de los fármacos , Inmunidad Celular , Receptores de Reconocimiento de Patrones/efectos de los fármacos , Vacunas/inmunología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...