Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Crit Care ; 26(1): 297, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175982

RESUMEN

BACKGROUND: The ventilatory ratio (VR, [minute ventilation × PaCO2]/[predicted body weight × 100 × 37.5]) is associated with mortality in ARDS. The aims of this study were to test whether baseline disease severity or neuromuscular blockade (NMB) modified the relationship between VR and mortality. METHODS: This was a post hoc analysis of the PETAL-ROSE trial, which randomized moderate-to-severe ARDS patients to NMB or control. Survival among patients with different VR trajectories or VR cutoff above and below the median was assessed by Kaplan-Meier analysis. The relationships between single-day or 48-h VR trajectories with 28- or 90-day mortality were tested by logistic regression. Randomization allocation to NMB and markers of disease severity were tested as confounders by multivariable regression and interaction term analyses. RESULTS: Patients with worsening VR trajectories had significantly lower survival compared to those with improving VR (n = 602, p < 0.05). Patients with VR > 2 (median) at day 1 had a significantly lower 90-day survival compared to patients with VR ≤ 2 (HR 1.36, 95% CI 1.10-1.69). VR at day 1 was significantly associated with 28-day mortality (OR = 1.40, 95% CI 1.15-1.72). There was no interaction between NMB and VR for 28-day mortality. APACHE-III had a significant interaction with VR at baseline for the outcome of 28-day mortality, such that the relationship between VR and mortality was stronger among patients with lower APACHE-III. There was a significant association between rising VR trajectory and mortality that was independent of NMB, baseline PaO2/FiO2 ratio and generalized markers of disease severity (Adjusted OR 1.81, 95% CI 1.28-2.84 for 28-day and OR 2.07 95% CI 1.41-3.10 for 90-day mortality). APACHE-III and NMB were not effect modifiers in the relationship between VR trajectory and mortality. CONCLUSIONS: Elevated baseline and day 1 VR were associated with higher 28-day mortality. The relationship between baseline VR and mortality was stronger among patients with lower APACHE-III. APACHE-III was not an effect modifier for the relationship between VR trajectory and mortality, so that the VR trajectory may be optimally suited for prognostication and predictive enrichment. VR was not different between patients randomized to NMB or control, indicating that VR can be utilized without correcting for NMB.


Asunto(s)
Bloqueo Neuromuscular , Síndrome de Dificultad Respiratoria , APACHE , Humanos , Estimación de Kaplan-Meier , Pronóstico , Síndrome de Dificultad Respiratoria/terapia
2.
Respir Care ; 67(9): 1075-1081, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35641002

RESUMEN

BACKGROUND: How indices specific to respiratory compromise contribute to prognostication in patients with ARDS is not well characterized in general clinical populations. The primary objective of this study was to identify variables specific to respiratory failure that might add prognostic value to indicators of systemic illness severity in an observational cohort of subjects with ARDS. METHODS: Fifty subjects with ARDS were enrolled in a single-center, prospective, observational cohort. We tested the contribution of respiratory variables (oxygenation index, ventilatory ratio [VR], and the radiographic assessment of lung edema score) to logistic regression models of 28-d mortality adjusted for indicators of systemic illness severity (the Acute Physiology and Chronic Health Evaluation [APACHE] III score or severity of shock as measured by the number of vasopressors required at baseline) using likelihood ratio testing. We also compared a model utilizing APACHE III with one including baseline number of vasopressors by comparing the area under the receiver operating curve (AUROC). RESULTS: VR significantly improved model performance by likelihood ratio testing when added to APACHE III (P = .036) or the number of vasopressors at baseline (P = .01). Number of vasopressors required at baseline had similar prognostic discrimination to the APACHE III. A model including the number of vasopressors and VR (AUROC 0.77 [95% CI 0.64-0.90]) was comparable to a model including APACHE III and VR (AUROC 0.81 [95% CI 0.68-0.93]; P for comparison = .58.). CONCLUSIONS: In this observational cohort of subjects with ARDS, the VR significantly improved discrimination for mortality when combined with indicators of severe systemic illness. The number of vasopressors required at baseline and APACHE III had similar discrimination for mortality when combined with VR. VR is easily obtained at the bedside and offers promise for clinical prognostication.


Asunto(s)
Síndrome de Dificultad Respiratoria , APACHE , Estudios de Cohortes , Humanos , Unidades de Cuidados Intensivos , Pronóstico , Estudios Prospectivos , Curva ROC
3.
Nat Commun ; 12(1): 5152, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34446707

RESUMEN

The immunological features that distinguish COVID-19-associated acute respiratory distress syndrome (ARDS) from other causes of ARDS are incompletely understood. Here, we report the results of comparative lower respiratory tract transcriptional profiling of tracheal aspirate from 52 critically ill patients with ARDS from COVID-19 or from other etiologies, as well as controls without ARDS. In contrast to a "cytokine storm," we observe reduced proinflammatory gene expression in COVID-19 ARDS when compared to ARDS due to other causes. COVID-19 ARDS is characterized by a dysregulated host response with increased PTEN signaling and elevated expression of genes with non-canonical roles in inflammation and immunity. In silico analysis of gene expression identifies several candidate drugs that may modulate gene expression in COVID-19 ARDS, including dexamethasone and granulocyte colony stimulating factor. Compared to ARDS due to other types of viral pneumonia, COVID-19 is characterized by impaired interferon-stimulated gene (ISG) expression. The relationship between SARS-CoV-2 viral load and expression of ISGs is decoupled in patients with COVID-19 ARDS when compared to patients with mild COVID-19. In summary, assessment of host gene expression in the lower airways of patients reveals distinct immunological features of COVID-19 ARDS.


Asunto(s)
COVID-19/genética , ARN/genética , Síndrome de Dificultad Respiratoria/genética , Tráquea/inmunología , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/inmunología , COVID-19/virología , Estudios de Casos y Controles , Estudios de Cohortes , Enfermedad Crítica , Citocinas/genética , Citocinas/inmunología , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , ARN/metabolismo , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/virología , SARS-CoV-2/fisiología , Análisis de Secuencia de ARN
5.
Am J Physiol Lung Cell Mol Physiol ; 320(6): L1085-L1092, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33822656

RESUMEN

Resolution of the acute respiratory distress syndrome (ARDS) from pneumonia requires repair of the injured lung endothelium and alveolar epithelium, removal of neutrophils from the distal airspaces of the lung, and clearance of the pathogen. Previous studies have demonstrated the importance of specialized proresolving mediators (SPMs) in the regulation of host responses during inflammation. Although ARDS is commonly caused by Streptococcus pneumoniae, the role of lipoxin A4 (LXA4) and resolvin D1 (RvD1) in pneumococcal pneumonia is not well understood. In the present experimental study, we tested the hypothesis that endogenous SPMs play a role in the resolution of lung injury in a clinically relevant model of bacterial pneumonia. Blockade of formyl peptide receptor 2 (ALX/FPR2), the receptor for LXA4 and RvD1, with the peptide WRW4 resulted in more pulmonary edema, greater protein accumulation in the air spaces, and increased bacteria accumulation in the air spaces and the blood. Inhibition of this receptor was also associated with decreased levels of proinflammatory cytokines. Even in the presence of antibiotic treatment, WRW4 inhibited the resolution of lung injury. In summary, these experiments demonstrated two novel findings: LXA4 and RvD1 contribute to the resolution of lung injury due to pneumococcal pneumonia, and the mechanism of their benefit likely includes augmenting bacterial clearance and reducing pulmonary edema via the restoration of lung alveolar-capillary barrier permeability.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Ácidos Docosahexaenoicos/antagonistas & inhibidores , Lipoxinas/antagonistas & inhibidores , Neumonía Neumocócica/tratamiento farmacológico , Receptores de Lipoxina/efectos de los fármacos , Lesión Pulmonar Aguda/complicaciones , Lesión Pulmonar Aguda/inmunología , Animales , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/metabolismo , Ratones , Permeabilidad/efectos de los fármacos , Neumonía Neumocócica/complicaciones , Neumonía Neumocócica/inmunología , Receptores de Lipoxina/metabolismo , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/inmunología
7.
Res Sq ; 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33469573

RESUMEN

We performed comparative lower respiratory tract transcriptional profiling of 52 critically ill patients with the acute respiratory distress syndrome (ARDS) from COVID-19 or from other etiologies, as well as controls without ARDS. In contrast to a cytokine storm, we observed reduced proinflammatory gene expression in COVID-19 ARDS when compared to ARDS due to other causes. COVID-19 ARDS was characterized by a dysregulated host response with increased PTEN signaling and elevated expression of genes with non-canonical roles in inflammation and immunity that were predicted to be modulated by dexamethasone and granulocyte colony stimulating factor. Compared to ARDS due to other types of viral pneumonia, COVID-19 was characterized by impaired interferon-stimulated gene expression (ISG). We found that the relationship between SARS-CoV-2 viral load and expression of ISGs was decoupled in patients with COVID-19 ARDS when compared to patients with mild COVID-19. In summary, assessment of host gene expression in the lower airways of patients with COVID-19 ARDS did not demonstrate cytokine storm but instead revealed a unique and dysregulated host response predicted to be modified by dexamethasone.

8.
Intensive Care Med ; 46(12): 2136-2152, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33206201

RESUMEN

Although the acute respiratory distress syndrome (ARDS) is well defined by the development of acute hypoxemia, bilateral infiltrates and non-cardiogenic pulmonary edema, ARDS is heterogeneous in terms of clinical risk factors, physiology of lung injury, microbiology, and biology, potentially explaining why pharmacologic therapies have been mostly unsuccessful in treating ARDS. Identifying phenotypes of ARDS and integrating this information into patient selection for clinical trials may increase the chance for efficacy with new treatments. In this review, we focus on classifying ARDS by the associated clinical disorders, physiological data, and radiographic imaging. We consider biologic phenotypes, including plasma protein biomarkers, gene expression, and common causative microbiologic pathogens. We will also discuss the issue of focusing clinical trials on the patient's phase of lung injury, including prevention, administration of therapy during early acute lung injury, and treatment of established ARDS. A more in depth understanding of the interplay of these variables in ARDS should provide more success in designing and conducting clinical trials and achieving the goal of personalized medicine.


Asunto(s)
Fenotipo , Síndrome de Dificultad Respiratoria/genética , Biomarcadores , Humanos , Medicina de Precisión/tendencias , Radiografía/métodos , Radiografía/tendencias , Síndrome de Dificultad Respiratoria/complicaciones , Síndrome de Dificultad Respiratoria/fisiopatología
10.
Nat Commun ; 7: 13856, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-28000665

RESUMEN

In gonadal tissues, the Piwi-interacting (piRNA) pathway preserves genomic integrity by employing 23-29 nucleotide (nt) small RNAs complexed with argonaute proteins to suppress parasitic mobile sequences of DNA called transposable elements (TEs). Although recent evidence suggests that the piRNA pathway may be present in select somatic cells outside the gonads, the role of a non-gonadal somatic piRNA pathway is not well characterized. Here we report a functional somatic piRNA pathway in the adult Drosophila fat body including the presence of the piRNA effector protein Piwi and canonical 23-29 nt long TE-mapping piRNAs. The piwi mutants exhibit depletion of fat body piRNAs, increased TE mobilization, increased levels of DNA damage and reduced lipid stores. These mutants are starvation sensitive, immunologically compromised and short-lived, all phenotypes associated with compromised fat body function. These findings demonstrate the presence of a functional non-gonadal somatic piRNA pathway in the adult fat body that affects normal metabolism and overall organismal health.


Asunto(s)
Drosophila/genética , Cuerpo Adiposo/metabolismo , Homeostasis/genética , Longevidad/genética , ARN Interferente Pequeño/genética , Transducción de Señal/genética , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Daño del ADN , Elementos Transponibles de ADN/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Femenino , Masculino , Mutagénesis Insercional , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA