Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Poult Sci ; 103(9): 103972, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38936074

RESUMEN

White Leghorn chickens from a common founder population have been divergently selected for high (HAS) or low (LAS) antibody responses to sheep red blood cells (SRBC) for 49 generations resulting in 2 diverse lines for this trait. Much has been studied in these two lines; however, the impact of these selection pressures on cytokine and chemokine expression is not fully understood. The purpose of this study is to determine if selection for antibody response to SRBC impacts cytokine and chemokine expression in peripheral blood leukocytes (PBL) and spleen from HAS and LAS chickens. Total RNA was isolated from PBL and spleen after which mRNA expression of cytokines (IL4, IL6, IL10, TGF-ß4) and chemokines (CXCL8, CCL4) were determined by quantitative real-time RT-PCR (qRT-PCR). The data were analyzed using Student's t test comparing HAS and LAS (P < 0.05) and are reported as corrected 40-CT. PBL and spleen samples were analyzed separately. With respect to PBL, expression of IL6 was higher (P < 0.05) in PBL isolated from LAS chickens compared to those from the HAS line whereas there were no differences (P > 0.05) in IL4, IL10, CXCL8, CCL4, or TGF-ß4. The cytokine and chemokine mRNA expression profiles were different in the spleen between the two lines. IL4 and CXCL8 expression were higher (P < 0.05) in spleen samples from HAS chickens than LAS. The expression of IL6, IL10, CCL4, or TGF-ß4 in the spleens did not differ (P > 0.05) between the lines. The data indicate that selection for specific antibody responses to SRBC impacts the cytokine and chemokine expression profile in PBL and spleens but in different ways in HAS and LAS. These studies provide insight into the influence that selection pressures for antibody responses have on different immune response components, specifically cytokines and chemokines typically involved in the innate response.


Asunto(s)
Quimiocinas , Pollos , Citocinas , Eritrocitos , Leucocitos , Bazo , Animales , Bazo/inmunología , Bazo/metabolismo , Pollos/inmunología , Pollos/genética , Citocinas/genética , Citocinas/metabolismo , Eritrocitos/inmunología , Eritrocitos/metabolismo , Ovinos , Quimiocinas/genética , Quimiocinas/metabolismo , Leucocitos/inmunología , Leucocitos/metabolismo , Formación de Anticuerpos , Selección Genética , Proteínas Aviares/genética , Proteínas Aviares/metabolismo
2.
PLoS One ; 19(5): e0295109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38739572

RESUMEN

The genetic complexity of polygenic traits represents a captivating and intricate facet of biological inheritance. Unlike Mendelian traits controlled by a single gene, polygenic traits are influenced by multiple genetic loci, each exerting a modest effect on the trait. This cumulative impact of numerous genes, interactions among them, environmental factors, and epigenetic modifications results in a multifaceted architecture of genetic contributions to complex traits. Given the well-characterized genome, diverse traits, and range of genetic resources, chicken (Gallus gallus) was employed as a model organism to dissect the intricate genetic makeup of a previously identified major Quantitative Trait Loci (QTL) for body weight on chromosome 1. A multigenerational advanced intercross line (AIL) of 3215 chickens whose genomes had been sequenced to an average of 0.4x was analyzed using genome-wide association study (GWAS) and variance-heterogeneity GWAS (vGWAS) to identify markers associated with 8-week body weight. Additionally, epistatic interactions were studied using the natural and orthogonal interaction (NOIA) model. Six genetic modules, two from GWAS and four from vGWAS, were strongly associated with the studied trait. We found evidence of both additive- and non-additive interactions between these modules and constructed a putative local epistasis network for the region. Our screens for functional alleles revealed a missense variant in the gene ribonuclease H2 subunit B (RNASEH2B), which has previously been associated with growth-related traits in chickens and Darwin's finches. In addition, one of the most strongly associated SNPs identified is located in a non-coding region upstream of the long non-coding RNA, ENSGALG00000053256, previously suggested as a candidate gene for regulating chicken body weight. By studying large numbers of individuals from a family material using approaches to capture both additive and non-additive effects, this study advances our understanding of genetic complexities in a highly polygenic trait and has practical implications for poultry breeding and agriculture.


Asunto(s)
Pollos , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Animales , Pollos/genética , Pollos/crecimiento & desarrollo , Peso Corporal/genética , Polimorfismo de Nucleótido Simple , Epistasis Genética , Fenotipo , Femenino , Herencia Multifactorial , Masculino
3.
Animals (Basel) ; 14(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791704

RESUMEN

Long-term divergent selection from a common founder population for a single trait-antibody response to sheep erythrocytes 5 days post-injection-has resulted in two distinct lines of White Leghorn chickens with a well-documented difference in antibody titers: high (HAS)- and low (LAS)-antibody selected lines. Subpopulations-high (HAR)- and low (LAR)-antibody relaxed-were developed from generation 24 of the selected lines to relax selection. The objective of the current experiment was to determine if this long-term selection and relaxation of selection impacted the growth of two organs important to chicken immunity: the spleen and the bursa of Fabricius. Spleens and bursae were obtained from ten chickens per line at nine timepoints (E18, D0, D6, D13, D20, D35, D49, D63, and D91) throughout their rapid growth phase and presented as a percent of body weight. Significance was set at p ≤ 0.05. For the spleen, all lines consistently increased in size relative to body weight to D49, followed by a consistent decline. All lines had a similar growth pattern, but HAS spleens grew faster than LAS spleens. For the bursa, LAS was smaller than the other three lines as an embryo and also smaller than HAS through D63. In the selected lines, bursa weight peaked at D35, whereas the relaxed lines peaked at D49. By D91, there was no difference between lines. Artificial and natural selection, represented by the long-term selected and relaxed antibody lines, resulted in differences in the growth patterns and relative weights of the spleen and bursa of Fabricius.

4.
Poult Sci ; 103(4): 103538, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387293

RESUMEN

The early posthatch period is crucial to intestinal development, shaping long-term growth, metabolism, and health of the chick. The objective of this study was to determine the effect of genetic selection on morphological characteristics and gene expression during early intestinal development. Populations of White Plymouth Rocks have been selected for high weight (HWS) and low weight (LWS) for over 63 generations, and some LWS display symptoms of anorexia. Intestinal structure and function of these populations were compared to a commercial broiler Cobb 500 (Cobb) during the perihatch period. Egg weights, yolk-free embryo BW, yolk weights, and jejunal samples from HWS, LWS, and Cobb were collected on embryonic day (e) 17, e19, day of hatch, day (d) 3, d5, and d7 posthatch for histology and gene expression analysis. The RNAscope in-situ hybridization method was used to localize expression of the stem cell marker, olfactomedin 4 (Olfm4). Villus height (VH), crypt depth (CD), and VH/CD were measured from Olfm4 stained images using ImageJ. mRNA abundance for Olfm4, stem cell marker Lgr5, peptide transporter PepT1, goblet cell marker Muc2, marker of proliferation Ki67, and antimicrobial peptide LEAP2 were examined. Two-factor ANOVA was performed for measurements and Turkey's HSD was used for mean separation when appropriate. Cobb were heaviest and LWS the lightest (P < 0.01). at each timepoint. VH increased in Cobb and CD increased in HWS compared to LWS (P < 0.01). PepT1 mRNA was upregulated in LWS (P < 0.01), and Muc2 mRNA was decreased in both HWS and LWS compared to Cobb (P < 0.01). Selection for high or low 8-wk body weight has caused differences in intestinal gene expression and morphology when compared to a commercial broiler.


Asunto(s)
Pollos , Duodeno , Animales , Hibridación in Situ/veterinaria , Duodeno/metabolismo , ARN Mensajero/genética , Peso Corporal
5.
Poult Sci ; 102(7): 102751, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37244088

RESUMEN

Since the 1970s, 2 lines of White Leghorn chickens, HAS and LAS, have been continuously divergently selected for 5-day postinjection antibody titer to injection with sheep red blood cells (SRBC). Antibody response is a complex genetic trait and characterizing differences in gene expression could facilitate better understanding of physiological changes due to selection and antigen exposure. At 41 d of age, randomly selected HAS and LAS chickens, which had been coraised from hatch, were either injected with SRBC (HASI and LASI) or kept as the noninjected cohort (HASN and LASN). Five days later, all were euthanized, and samples collected from the jejunum for RNA isolation and sequencing. Resulting gene expression data were analyzed combining traditional statistics with machine learning to obtain signature gene lists for functional analysis. Differences in ATP production and cellular processes were observed in the jejunum between lines and following SRBC injection. HASN vs. LASN exhibited upregulation of ATP production, immune cell motility, and inflammation. LASI exhibits upregulation of ATP production and protein synthesis vs. LASN, reflective of what was observed in HASN vs. LASN. In contrast, no corresponding upregulation of ATP production was observed in HASI vs. HASN, and most other cellular processes appear inhibited. Without exposure to SRBC, gene expression in the jejunum indicates HAS generates more ATP than LAS, suggesting HAS maintains a "primed" system; and gene expression of HASI vs. HASN further suggests this basal ATP production is sufficient for robust antibody responses. Conversely, LASI vs. LASN jejunal gene expression implies a physiological need for increased ATP production with only minimal correlating antibody production. The results of this experiment provide insight into energetic resource needs and allocations in the jejunum in response to genetic selection and antigen exposure in HAS and LAS which may help explain phenotypic differences observed in antibody response.


Asunto(s)
Formación de Anticuerpos , Pollos , Animales , Adenosina Trifosfato , Pollos/genética , Metabolismo Energético , Eritrocitos , Expresión Génica , Yeyuno , Ovinos/genética , Aprendizaje Automático Supervisado
6.
Front Physiol ; 14: 1150620, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969607
7.
Front Physiol ; 14: 1304051, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38260103

RESUMEN

For forty generations, two lines of White Leghorn chickens have been selected for high (HAS) or low (LAS) antibody response to a low dose injection of sheep red blood cells (SRBCs). Their gut is home to billons of microorganisms and the largest number of immune cells in the body; therefore, the objective of this experiment was to gain understanding of the ways the microbiome may influence the differential antibody response observed in these lines. We achieved this by characterizing the small intestinal microbiome of HAS and LAS chickens, determining their functional microbiome profiles, and by using machine learning to identify microbes which best differentiate HAS from LAS and associating the abundance of those microbes with host gene expression. Microbiome sequencing revealed greater diversity in LAS but statistically higher abundance of several strains, particularly those of Lactobacillus, in HAS. Enrichment of microbial metabolites implicated in immune response such as lactic acid, short chain fatty acids, amino acids, and vitamins were different between HAS and LAS. The abundance of several microbial strains corresponds to enriched host gene expression pathways related to immune response. These data provide a compelling argument that the microbiome is both likely affected by host divergent genetic selection and that it exerts influence on host antibody response by various mechanisms.

8.
Front Physiol ; 14: 1294560, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239884

RESUMEN

Histomonas meleagridis, a protozoan parasite, induces blackhead disease (histomoniasis) in poultry. During hatching, chicks from lines divergently selected for high (HAS) and low (LAS) antibody responses to sheep red blood cells were divided into two groups, each of HAS and LAS, and placed in pens with wood shavings as litter. Feed and water were allowed ad libitum. Half of the chicks from each line had Limosilactobacillus reuteri (L. reuteri) inoculated to their drinking water. On day 18, all chicks were given a transcloacal inoculation of 100,000 H. meleagridis cells. Then, 10 days later, they were euthanized, followed by collection of tissues from the brain, cecal tonsil, ceca, liver, thymus, and spleen for qPCR analyses of cytokines involved in immunological development. Changes in cytokine expressions were most numerous in the cecal tonsil, ceca, and liver. In the absence of a functional medication for control of histomoniasis, L. reuteri and/or its secretory product, reuterin, might serve, in some genetic populations, as a means to reduce the impact of histomoniasis in chickens. The data demonstrate that L. reuteri treatment had tissue specificity between the two genetic lines, in which the effects were targeted primarily toward the cecal tonsil, ceca, and liver, which are the primary tissue targets of the parasite (H. meleagridis), as well as the thymus and spleen. However, interactions among main effects reflect that responses to inflammatory markers observed in tissues for one genetic line may not be observed in another.

9.
mSphere ; 7(6): e0029522, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36317895

RESUMEN

Usutu virus (USUV, Flaviviridae) is an emerging mosquito-borne virus that has been implicated in neuroinvasive disease in humans and epizootic deaths in wild birds. USUV is maintained in an enzootic cycle between ornithophilic mosquitoes, primarily Culex spp., and wild birds, predominantly passerine species. However, limited experimental data exist on the species competent for USUV transmission. Here, we demonstrate that house sparrows are susceptible to multiple USUV strains. Our study also revealed that Culex quinquefasciatus mosquitoes are susceptible to USUV, with a significantly higher infection rate for the Netherlands 2016 USUV strain compared to the Uganda 2012 USUV strain at 50% and 19%, respectively. To assess transmission between avian host and mosquito vector, we allowed mosquitoes to feed on either juvenile chickens or house sparrows inoculated with USUV. Both bird models transmitted USUV to C. quinquefasciatus mosquitoes. Linear regression analyses indicated that C. quinquefasciatus infection rates were positively correlated with avian viremia levels, with 3 to 4 log10 PFU/mL representing the minimum avian viremia threshold for transmission to mosquitoes. Based on the viremia required for transmission, house sparrows were estimated to more readily transmit the Netherlands 2016 strain compared to the Uganda 2012 strain. These studies provide insights on a competent reservoir host of USUV. IMPORTANCE Usutu virus (USUV) is a zoonotic mosquito-borne virus that can cause neuroinvasive disease, including meningitis and encephalitis, in humans and has resulted in hundreds of thousands of deaths in wild birds. The perpetuation of USUV in nature is dependent on transmission between Culex spp. mosquitoes and various avian species. To date, few experimental data exist for determining which bird species are important for the maintenance of USUV. Our studies showed that house sparrows can transmit infectious Usutu virus, indicating their role as a competent host species. By identifying reservoir species of USUV, we can predict areas of USUV emergence and mitigate its impacts on global human and wildlife health.


Asunto(s)
Culex , Culicidae , Humanos , Animales , Viremia , Pollos , Pueblos de América del Norte
10.
Front Microbiol ; 13: 916280, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847106

RESUMEN

The host and its symbiotic bacteria form a biological entity, holobiont, in which they share a dynamic connection characterized by symbiosis, co-metabolism, and coevolution. However, how these collaborative relationships were maintained over evolutionary time remains unclear. In this research, the small non-coding RNA (sncRNA) profiles of cecum and their bacteria contents were measured from lines of chickens that have undergone long-term selection for high (HWS) or low (LWS) 56-day body weight. The results from these lines that originated from a common founder population and maintained under the same husbandry showed an association between host intestinal sncRNA expression profile (miRNA, lncRNA fragment, mRNA fragment, snoRNA, and snRNA) and intestinal microbiota. Correlation analyses suggested that some central miRNAs and mRNA fragments had interactions with the abundance of intestinal microbial species and microbiota functions. miR-6622-3p, a significantly differentially expressed (DE) miRNA was correlated with a body weight gain related bacterium, Alistipes putredinis. Our results showed that host sncRNAs may be mediators of interaction between the host and its intestinal microbiome. This provides additional clue for holobiont concepts.

11.
mSystems ; 7(1): e0126121, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35014869

RESUMEN

Multiomic analyses reported here involved two lines of chickens, from a common founder population, that had undergone long-term selection for high (HWS) or low (LWS) 56-day body weight. In these lines that differ by around 15-fold in body weight, we observed different compositions of intestinal microbiota in the holobionts and variation in DNA methylation, mRNA expression, and microRNA profiles in the ceca. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) was the most upregulated gene in HWS ceca with its expression likely affected by the upregulation of expression of gga-miR-2128 and a methylated region near its transcription start site (388 bp). Correlation analysis showed that IGF2BP1 expression was associated with an abundance of microbes, such as Lactobacillus and Methanocorpusculum. These findings suggest that IGF2BP1 was regulated in the hologenome in adapting to long-term artificial selection for body weight. Our study provides evidence that adaptation of the holobiont can occur in the microbiome as well as in the epigenetic profile of the host. IMPORTANCE The hologenome concept has broadened our perspectives for studying host-microbe coevolution. The multiomic analyses reported here involved two lines of chickens, from a common founder population, that had undergone long-term selection for high (HWS) or low (LWS) 56-day body weight. In these lines that differ by around 15-fold in body weight, we observed different compositions of intestinal microbiota in the holobionts, and variation in DNA methylation, mRNA expression, and microRNA profiles in ceca. The insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) was the most upregulated gene in HWS ceca with its expression likely affected by a methylated region near its transcription start site and the upregulation of expression of gga-miR-2128. Correlation analysis also showed that IGF2BP1 expression was associated with the abundance of microbes, such as Lactobacillus and Methanocorpusculum. These findings suggest that IGF2BP1 was regulated in the hologenome in response to long-term artificial selection for body weight. Our study shows that the holobiont may adapt in both the microbiome and the host's epigenetic profile.


Asunto(s)
Microbioma Gastrointestinal , MicroARNs , Somatomedinas , Animales , Pollos/genética , Peso Corporal/genética , ARN Mensajero/genética
12.
Poult Sci ; 101(3): 101621, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34995879

RESUMEN

The chicken MHCY region contains members of several gene families including a family of highly polymorphic MHC class I genes that are structurally distinct from their classical class I gene counterparts. Genetic variability at MHCY could impart variability in immune responses, but robust tests for whether or not this occurs have been lacking. Here we defined the MHCY genotypes present in 2 sets of chicken lines selected for high or low antibody response, the Virginia Tech (VT) HAS and LAS, and the Wageningen University (WU) HA and LA lines. Both sets were developed under long-term bidirectional selection for differences in antibody responses following immunization with the experimental antigen sheep red blood cells. Lines in which selection was relaxed (VT HAR and LAR) or lacking (WU C) provided controls. We looked for evidence of association between MHCY genotypes and antibody titers. Chickens were typed for MHCY using a recently developed method based on a multilocus short tandem repeat sequence found across MHCY haplotypes. Five MHCY haplotypes were found segregating in the VT HAS and LAS lines. One haplotype was present only in HAS chickens, and another was present only in LAS chickens with distribution of the remaining 3 haplotypes differing significantly between the lines. In the WU HA and LA lines, there was a similar MHCY asymmetry. The control populations lacked similar asymmetries. These observations support the likelihood of MHCY genetics affecting heritable antibody responses and provide a basis for further investigations into the role of MHCY region genes in guiding immune responses in chickens.


Asunto(s)
Formación de Anticuerpos , Pollos , Animales , Pollos/genética , Eritrocitos , Genotipo , Haplotipos , Ovinos/genética
13.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34607956

RESUMEN

Melanotic (Ml) is a mutation in chickens that extends black (eumelanin) pigmentation in normally brown or red (pheomelanin) areas, thus affecting multiple within-feather patterns [J. W. Moore, J. R. Smyth Jr, J. Hered. 62, 215-219 (1971)]. In the present study, linkage mapping using a back-cross between Dark Cornish (Ml/Ml) and Partridge Plymouth Rock (ml+/ml+ ) chickens assigned Ml to an 820-kb region on chromosome 1. Identity-by-descent mapping, via whole-genome sequencing and diagnostic tests using a diverse set of chickens, refined the localization to the genomic region harboring GJA5 encoding gap-junction protein 5 (alias connexin 40) previously associated with pigmentation patterns in zebrafish. An insertion/deletion polymorphism located in the vicinity of the GJA5 promoter region was identified as the candidate causal mutation. Four different GJA5 transcripts were found to be expressed in feather follicles and at least two showed differential expression between genotypes. The results showed that Melanotic constitutes a cis-acting regulatory mutation affecting GJA5 expression. A recent study established the melanocortin-1 receptor (MC1R) locus and the interaction between the MC1R receptor and its antagonist agouti-signaling protein as the primary mechanism underlying variation in within-feather pigmentation patterns in chickens. The present study advances understanding the mechanisms underlying variation in plumage color in birds because it demonstrates that the activity of connexin 40/GJA5 can modulate the periodic pigmentation patterns within individual feathers.


Asunto(s)
Proteína de Señalización Agouti/genética , Pollos/genética , Conexinas/genética , Plumas/fisiología , Pigmentación/genética , Receptor de Melanocortina Tipo 1/genética , Animales , Mutación INDEL/genética , Queratinocitos/metabolismo , Melaninas/genética , Regiones Promotoras Genéticas/genética , Proteína alfa-5 de Unión Comunicante
14.
Emerg Microbes Infect ; 10(1): 725-738, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33769213

RESUMEN

Usutu virus (USUV; family: Flaviviridae, genus: Flavivirus), is an emerging zoonotic arbovirus that causes severe neuroinvasive disease in humans and has been implicated in the loss of breeding bird populations in Europe. USUV is maintained in an enzootic cycle between ornithophilic mosquitos and wild birds. As a member of the Japanese encephalitis serocomplex, USUV is closely related to West Nile virus (WNV) and St. Louis encephalitis virus (SLEV), both neuroinvasive arboviruses endemic in wild bird populations in the United States. An avian model for USUV is essential to understanding zoonotic transmission. Here we describe the first avian models of USUV infection with the development of viremia. Juvenile commercial ISA Brown chickens were susceptible to infection by multiple USUV strains with evidence of cardiac lesions. Juvenile chickens from two chicken lines selected for high (HAS) or low (LAS) antibody production against sheep red blood cells showed markedly different responses to USUV infection. Morbidity and mortality were observed in the LAS chickens, but not HAS chickens. LAS chickens had significantly higher viral titers in blood and other tissues, as well as oral secretions, and significantly lower development of neutralizing antibody responses compared to HAS chickens. Mathematical modelling of virus-host interactions showed that the viral clearance rate is a stronger mitigating factor for USUV viremia than neutralizing antibody response in this avian model. These chicken models provide a tool for further understanding USUV pathogenesis in birds and evaluating transmission dynamics between avian hosts and mosquito vectors.


Asunto(s)
Infecciones por Flavivirus/virología , Flavivirus/fisiología , Flavivirus/patogenicidad , Enfermedades de las Aves de Corral/virología , Esparcimiento de Virus , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Pollos , Culicidae/fisiología , Culicidae/virología , Flavivirus/genética , Infecciones por Flavivirus/inmunología , Infecciones por Flavivirus/mortalidad , Interacciones Huésped-Patógeno , Humanos , Modelos Teóricos , Mosquitos Vectores/fisiología , Mosquitos Vectores/virología , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/mortalidad , Ovinos , Virulencia
15.
Genes (Basel) ; 11(6)2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32521737

RESUMEN

Bi-directional selection for increased and decreased 56-day body weights (BW56) has been applied to two lines of White Plymouth Rock chickens-the Virginia high (HWS) and low (LWS) body weight lines. Correlated responses have been observed, including negative effects on traits related to fitness. Here, we use high and low body weight as proxies for fitness. On a genome-wide level, relaxed lines (HWR, LWR) bred from HWS and LWS purged some genetic variants in the selected lines. Whole-genome re-sequencing was here used to identify individual loci where alleles that accumulated during directional selection were purged when selection was relaxed. In total, 11 loci with significant purging signals were identified, five in the low (LW) and six in the high (HW) body weight lineages. Associations between purged haplotypes in these loci and BW56 were tested in an advanced intercross line (AIL). Two loci with purging signals and haplotype associations to BW56 are particularly interesting for further functional characterization, one locus on chromosome 6 in the LW covering the sour-taste receptor gene PKD2L1, a functional candidate gene for the decreased appetite observed in the LWS and a locus on chromosome 20 in the HW containing a skeletal muscle hypertrophy gene, DNTTIP1.


Asunto(s)
Peso Corporal/genética , Pollos/genética , Aptitud Genética/genética , Selección Genética/genética , Animales , Cruzamiento , Pollos/crecimiento & desarrollo , Haplotipos/genética , Delgadez/genética
16.
Life (Basel) ; 10(5)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349206

RESUMEN

The expression of neuropeptide Y (NPY) in the arcuate nucleus (ARC) and corticotropin-releasing factor (CRF) in the paraventricular nucleus (PVN) were increased when low body weight-selected (LWS) line chicks, which are predisposed to anorexia, were subjected to a combination of nutritional and thermal stressors at hatch. We hypothesized that such changes resulted from epigenetic modifications. We determined global DNA methylation, DNA methyltransferase (DNMT) activity, and methylation near the promoter regions of NPY and CRF, in the hypothalamus of LWS chicks on day 5 post-hatch. Stress exposure at hatch induced global hypermethylation and increased DNMT activity in the ARC but not PVN. In the PVN of stressed LWS chicks, there was decreased methylation of a CpG site located at the core binding domain of methyl cytosine binding domain protein 2 (MBD2), near the CRF gene promoter. We then demonstrated that this was associated with disrupted binding of MBD2. There was also reduced utilization of yolk reserves and lean and fat masses in chicks that were stress-exposed. These findings provide novel insights on molecular mechanisms through which stressful events induce or intensify anorexia in predisposed individuals and a novel molecular target for further studies.

17.
Mol Biol Evol ; 37(9): 2477-2486, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32344431

RESUMEN

Feathered leg is a trait in domestic chickens that has undergone intense selection by fancy breeders. Previous studies have shown that two major loci controlling feathered leg are located on chromosomes 13 and 15. Here, we present genetic evidence for the identification of candidate causal mutations at these loci. This was accomplished by combining classical linkage mapping using an experimental cross segregating for feathered leg and high-resolution identical-by-descent mapping using whole-genome sequence data from 167 samples of chicken with or without feathered legs. The first predicted causal mutation is a single-base change located 25 kb upstream of the gene for the forelimb-specific transcription factor TBX5 on chromosome 15. The second is a 17.7-kb deletion located ∼200 kb upstream of the gene for the hindlimb-specific transcription factor PITX1 on chromosome 13. These mutations are predicted to activate TBX5 and repress PITX1 expression, respectively. The study reveals a remarkable convergence in the evolution of the feathered-leg phenotype in domestic chickens and domestic pigeons, as this phenotype is caused by noncoding mutations upstream of the same two genes. Furthermore, the PITX1 causal variants are large overlapping deletions, 17.7 kb in chicken and 44 kb in pigeons. The results of the present study are consistent with the previously proposed model for pigeon that feathered leg is caused by reduced PITX1 expression and ectopic expression of TBX5 in hindlimb buds resulting in a shift of limb identity from hindlimb to more forelimb-like identity.


Asunto(s)
Pollos/genética , Plumas/crecimiento & desarrollo , Factores de Transcripción Paired Box/genética , Proteínas de Dominio T Box/genética , Animales , Pollos/crecimiento & desarrollo , Mapeo Cromosómico , Femenino , Eliminación de Gen , Extremidad Inferior , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple
18.
Artículo en Inglés | MEDLINE | ID: mdl-31446069

RESUMEN

The body weight-selected lines of chickens are a model for understanding factors that predispose an individual to anorexia or obesity. The high body weight-selected (HWS) individuals are compulsive eaters that become obese whereas the low body weight-selected (LWS) are relatively lean and hypophagic. The objective of this study was to measure gene expression of various preadipocyte, proliferation, metabolic, and apoptotic markers in the stromal-vascular fraction and adipocytes from LWS and HWS adipose tissue. Although preadipocyte and proliferation markers were more highly expressed in the stromal-vascular fraction of LWS than HWS chicks, greater expression of granzyme-A and the presence of more annexin V-positive cells suggests that apoptosis may limit the adipogenic potential of adipocyte precursor cells and represent a novel mechanism that regulates the expansion of adipose tissue. Results provide insights on cellular mechanisms associated with adipose tissue development in the lean and obese state.


Asunto(s)
Adipogénesis/genética , Tejido Adiposo/metabolismo , Anorexia/genética , Apoptosis/genética , Biomarcadores/metabolismo , Pollos/genética , Predisposición Genética a la Enfermedad , Obesidad/genética , Animales , Caspasa 3/genética , Caspasa 3/metabolismo , Granzimas/genética , Granzimas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
19.
Genet Sel Evol ; 51(1): 44, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31412777

RESUMEN

BACKGROUND: Experimental intercrosses between outbred founder populations are powerful resources for mapping loci that contribute to complex traits i.e. quantitative trait loci (QTL). Here, we present an approach and its accompanying software for high-resolution reconstruction of founder mosaic genotypes in the intercross offspring from such populations using whole-genome high-coverage sequence data on founder individuals (~ 30×) and very low-coverage sequence data on intercross individuals (< 0.5×). Sets of founder-line informative markers were selected for each full-sib family and used to infer the founder mosaic genotypes of the intercross individuals. The application of this approach and the quality of the estimated genome-wide genotypes are illustrated in a large F2 pedigree between two divergently selected lines of chickens. RESULTS: We describe how we obtained whole-genome genotype data for hundreds of individuals in a cost- and time-efficient manner by using a Tn5-based library preparation protocol and an imputation algorithm that was optimized for this application. In total, 7.6 million markers segregated in this pedigree and, within each full-sib family, between 10.0 and 13.7% of these were fully informative, i.e. fixed for alternative alleles in the founders from the divergent lines, and were used for reconstruction of the offspring mosaic genotypes. The genotypes that were estimated based on the low-coverage sequence data were highly consistent (> 95% agreement) with those obtained using individual single nucleotide polymorphism (SNP) genotyping. The estimated resolution of the inferred recombination breakpoints was relatively high, with 50% of them being defined on regions shorter than 10 kb. CONCLUSIONS: A method and software for inferring founder mosaic genotypes in intercross offspring from low-coverage whole-genome sequencing in pedigrees from heterozygous founders are described. They provide high-quality, high-resolution genotypes in a time- and cost-efficient manner. The software is freely available at https://github.com/CarlborgGenomics/Stripes .


Asunto(s)
Pollos/genética , Técnicas de Genotipaje , Secuenciación Completa del Genoma , Animales , Cruzamiento , Costos y Análisis de Costo , Cruzamientos Genéticos , Conjuntos de Datos como Asunto , Femenino , Efecto Fundador , Técnicas de Genotipaje/economía , Masculino , Linaje , Polimorfismo de Nucleótido Simple , Programas Informáticos , Secuenciación Completa del Genoma/economía
20.
Mob DNA ; 10: 38, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31467598

RESUMEN

BACKGROUND: Henny feathering in chickens is determined by a dominant mutation that transforms male-specific plumage to female-like plumage. Previous studies indicated that this phenotype is caused by ectopic expression in skin of CYP19A1 encoding aromatase that converts androgens to estrogen and thereby inhibits the development of male-specific plumage. A long terminal repeat (LTR) from an uncharacterized endogenous retrovirus (ERV) insertion was found in an isoform of the CYP19A1 transcript from henny feathering chicken. However, the complete sequence and the genomic position of the insertion were not determined. RESULTS: We used publicly available whole genome sequence data to determine the flanking sequences of the ERV, and then PCR amplified the entire insertion and sequenced it using Nanopore long reads and Sanger sequencing. The 7524 bp insertion contains an intact endogenous retrovirus that was not found in chickens representing 31 different breeds not showing henny feathering or in samples of the ancestral red junglefowl. The sequence shows over 99% sequence identity to the avian leukosis virus ev-1 and ev-21 strains, suggesting a recent integration. The ERV 3'LTR, containing a powerful transcriptional enhancer and core promoter with TATA box together with binding sites for EFIII and Ig/EBP inside the CYP19A1 5' untranslated region, was detected partially in an aromatase transcript, which present a plausible explanation for ectopic expression of aromatase in non-ovarian tissues underlying the henny feathering phenotype. CONCLUSIONS: We demonstrate that the henny feathering allele harbors an insertion of an intact avian leukosis virus at the 5'end of CYP19A1. The presence of this ERV showed complete concordance with the henny feathering phenotype both within a pedigree segregating for this phenotype and across breeds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...