Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Development ; 150(16)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37642459

RESUMEN

The vasculature consists of vessels of different sizes that are arranged in a hierarchical pattern. Two cell populations work in concert to establish this pattern during embryonic development and adopt it to changes in blood flow demand later in life: endothelial cells that line the inner surface of blood vessels, and adjacent vascular mural cells, including smooth muscle cells and pericytes. Despite recent progress in elucidating the signalling pathways controlling their crosstalk, much debate remains with regard to how mural cells influence endothelial cell biology and thereby contribute to the regulation of blood vessel formation and diameters. In this Review, I discuss mural cell functions and their interactions with endothelial cells, focusing on how these interactions ensure optimal blood flow patterns. Subsequently, I introduce the signalling pathways controlling mural cell development followed by an overview of mural cell ontogeny with an emphasis on the distinguishing features of mural cells located on different types of blood vessels. Ultimately, I explore therapeutic strategies involving mural cells to alleviate tissue ischemia and improve vascular efficiency in a variety of diseases.


Asunto(s)
Células Sanguíneas , Células Endoteliales , Femenino , Embarazo , Humanos , Diferenciación Celular , Desarrollo Embrionario , Biología
2.
Development ; 150(7)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36938965

RESUMEN

Blood vessels form elaborate networks that depend on tissue-specific signalling pathways and anatomical structures to guide their growth. However, it is not clear which morphogenetic principles organize the stepwise assembly of the vasculature. We therefore performed a longitudinal analysis of zebrafish caudal fin vascular assembly, revealing the existence of temporally and spatially distinct morphogenetic processes. Initially, vein-derived endothelial cells (ECs) generated arteries in a reiterative process requiring vascular endothelial growth factor (Vegf), Notch and cxcr4a signalling. Subsequently, veins produced veins in more proximal fin regions, transforming pre-existing artery-vein loops into a three-vessel pattern consisting of an artery and two veins. A distinct set of vascular plexuses formed at the base of the fin. They differed in their diameter, flow magnitude and marker gene expression. At later stages, intussusceptive angiogenesis occurred from veins in distal fin regions. In proximal fin regions, we observed new vein sprouts crossing the inter-ray tissue through sprouting angiogenesis. Together, our results reveal a surprising diversity among the mechanisms generating the mature fin vasculature and suggest that these might be driven by separate local cues.


Asunto(s)
Células Endoteliales , Pez Cebra , Animales , Pez Cebra/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Neovascularización Fisiológica , Venas/metabolismo
3.
Dev Biol ; 486: 26-43, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35337795

RESUMEN

The formation of appropriately patterned blood vessel networks requires endothelial cell migration and proliferation. Signaling through the Vascular Endothelial Growth Factor A (VEGFA) pathway is instrumental in coordinating these processes. mRNA splicing generates short (diffusible) and long (extracellular matrix bound) Vegfa isoforms. The differences between these isoforms in controlling cellular functions are not understood. In zebrafish, vegfaa generates short and long isoforms, while vegfab only generates long isoforms. We found that mutations in vegfaa had an impact on endothelial cell (EC) migration and proliferation. Surprisingly, mutations in vegfab more strongly affected EC proliferation in distinct blood vessels, such as intersegmental blood vessels in the zebrafish trunk and central arteries in the head. Analysis of downstream signaling pathways revealed no change in MAPK (ERK) activation, while inhibiting PI3 kinase signaling phenocopied vegfab mutant phenotypes in affected blood vessels. Together, these results suggest that extracellular matrix bound Vegfa might act through PI3K signaling to control EC proliferation in a distinct set of blood vessels during angiogenesis.


Asunto(s)
Factor A de Crecimiento Endotelial Vascular , Pez Cebra , Animales , Proliferación Celular , Neovascularización Fisiológica/genética , Fenotipo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
4.
Development ; 149(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35297968

RESUMEN

Vascular networks comprise endothelial cells and mural cells, which include pericytes and smooth muscle cells. To elucidate the mechanisms controlling mural cell recruitment during development and tissue regeneration, we studied zebrafish caudal fin arteries. Mural cells colonizing arteries proximal to the body wrapped around them, whereas those in more distal regions extended protrusions along the proximo-distal vascular axis. Both cell populations expressed platelet-derived growth factor receptor ß (pdgfrb) and the smooth muscle cell marker myosin heavy chain 11a (myh11a). Most wrapping cells in proximal locations additionally expressed actin alpha2, smooth muscle (acta2). Loss of Pdgfrb signalling specifically decreased mural cell numbers at the vascular front. Using lineage tracing, we demonstrate that precursor cells located in periarterial regions and expressing Pgdfrb can give rise to mural cells. Studying tissue regeneration, we did not find evidence that newly formed mural cells were derived from pre-existing cells. Together, our findings reveal conserved roles for Pdgfrb signalling in development and regeneration, and suggest a limited capacity of mural cells to self-renew or contribute to other cell types during tissue regeneration.


Asunto(s)
Miocitos del Músculo Liso , Pericitos , Receptor beta de Factor de Crecimiento Derivado de Plaquetas , Proteínas de Pez Cebra , Pez Cebra , Animales , Células Endoteliales/metabolismo , Miocitos del Músculo Liso/metabolismo , Pericitos/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
5.
Sci Rep ; 12(1): 4795, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35314737

RESUMEN

Endothelial cells (ECs) lining blood vessels are exposed to mechanical forces, such as shear stress. These forces control many aspects of EC biology, including vascular tone, cell migration and proliferation. Despite a good understanding of the genes responding to shear stress, our insight into the transcriptional regulation of these genes is much more limited. Here, we set out to study alterations in the chromatin landscape of human umbilical vein endothelial cells (HUVEC) exposed to laminar shear stress. To do so, we performed ChIP-Seq for H3K27 acetylation, indicative of active enhancer elements and ATAC-Seq to mark regions of open chromatin in addition to RNA-Seq on HUVEC exposed to 6 h of laminar shear stress. Our results show a correlation of gained and lost enhancers with up and downregulated genes, respectively. DNA motif analysis revealed an over-representation of KLF transcription factor (TF) binding sites in gained enhancers, while lost enhancers contained more ETV/ETS motifs. We validated a subset of flow responsive enhancers using luciferase-based reporter constructs and CRISPR-Cas9 mediated genome editing. Lastly, we characterized the shear stress response in ECs of zebrafish embryos using RNA-Seq. Our results lay the groundwork for the exploration of shear stress responsive elements in controlling EC biology.


Asunto(s)
Cromatina , Pez Cebra , Animales , Sitios de Unión , Células Cultivadas , Cromatina/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Estrés Mecánico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
6.
Nat Chem Biol ; 18(2): 152-160, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34937907

RESUMEN

We describe single-component optogenetic probes whose activation dynamics depend on both light and temperature. We used the BcLOV4 photoreceptor to stimulate Ras and phosphatidyl inositol-3-kinase signaling in mammalian cells, allowing activation over a large dynamic range with low basal levels. Surprisingly, we found that BcLOV4 membrane translocation dynamics could be tuned by both light and temperature such that membrane localization spontaneously decayed at elevated temperatures despite constant illumination. Quantitative modeling predicted BcLOV4 activation dynamics across a range of light and temperature inputs and thus provides an experimental roadmap for BcLOV4-based probes. BcLOV4 drove strong and stable signal activation in both zebrafish and fly cells, and thermal inactivation provided a means to multiplex distinct blue-light sensitive tools in individual mammalian cells. BcLOV4 is thus a versatile photosensor with unique light and temperature sensitivity that enables straightforward generation of broadly applicable optogenetic tools.


Asunto(s)
Comunicación Celular/fisiología , Optogenética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas ras/metabolismo , Animales , Línea Celular , Drosophila , Embrión no Mamífero , Ratones , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal , Temperatura , Pez Cebra , Proteínas ras/genética
7.
Genes Dev ; 34(13-14): 950-964, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32499402

RESUMEN

Hematopoietic stem cell (HSC) ontogeny is accompanied by dynamic changes in gene regulatory networks. We performed RNA-seq and histone mark ChIP-seq to define the transcriptomes and epigenomes of cells representing key developmental stages of HSC ontogeny in mice. The five populations analyzed were embryonic day 10.5 (E10.5) endothelium and hemogenic endothelium from the major arteries, an enriched population of prehematopoietic stem cells (pre-HSCs), fetal liver HSCs, and adult bone marrow HSCs. Using epigenetic signatures, we identified enhancers for each developmental stage. Only 12% of enhancers are primed, and 78% are active, suggesting the vast majority of enhancers are established de novo without prior priming in earlier stages. We constructed developmental stage-specific transcriptional regulatory networks by linking enhancers and predicted bound transcription factors to their target promoters using a novel computational algorithm, target inference via physical connection (TIPC). TIPC predicted known transcriptional regulators for the endothelial-to-hematopoietic transition, validating our overall approach, and identified putative novel transcription factors, including the broadly expressed transcription factors SP3 and MAZ. Finally, we validated a role for SP3 and MAZ in the formation of hemogenic endothelium. Our data and computational analyses provide a useful resource for uncovering regulators of HSC formation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Algoritmos , Animales , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos/genética , Epigénesis Genética/genética , Edición Génica , Ratones , Factor de Transcripción Sp3/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma
8.
Front Cell Dev Biol ; 7: 89, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31192207

RESUMEN

Since its introduction, the zebrafish has provided an important reference system to model and study cardiovascular development as well as lymphangiogenesis in vertebrates. A scientific workshop, held at the 2018 European Zebrafish Principal Investigators Meeting in Trento (Italy) and chaired by Massimo Santoro, focused on the most recent methods and studies on cardiac, vascular and lymphatic development. Daniela Panáková and Natascia Tiso described new molecular mechanisms and signaling pathways involved in cardiac differentiation and disease. Arndt Siekmann and Wiebke Herzog discussed novel roles for Wnt and VEGF signaling in brain angiogenesis. In addition, Brant Weinstein's lab presented data concerning the discovery of endothelium-derived macrophage-like perivascular cells in the zebrafish brain, while Monica Beltrame's studies refined the role of Sox transcription factors in vascular and lymphatic development. In this article, we will summarize the details of these recent discoveries in support of the overall value of the zebrafish model system not only to study normal development, but also associated disease states.

9.
Cardiovasc Res ; 115(10): 1487-1499, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30785199

RESUMEN

AIMS: Oscillatory shear stress (OSS) is an atheroprone haemodynamic force that occurs in areas of vessel irregularities and is implicated in the pathogenesis of atherosclerosis. Changes in signalling and transcriptional programme in response to OSS have been vigorously studied; however, the underlying changes in the chromatin landscape controlling transcription remain to be elucidated. Here, we investigated the changes in the regulatory element (RE) landscape of endothelial cells under atheroprone OSS conditions in an in vitro model. METHODS AND RESULTS: Analyses of H3K27ac chromatin immunoprecipitation-Seq enrichment and RNA-Seq in primary human umbilical vein endothelial cells 6 h after onset of OSS identified 2806 differential responsive REs and 33 differentially expressed genes compared with control cells kept under static conditions. Furthermore, gene ontology analyses of putative RE-associated genes uncovered enrichment of WNT/HIPPO pathway and cytoskeleton reorganization signatures. Transcription factor (TF) binding motif analysis within RE sequences identified over-representation of ETS, Zinc finger, and activator protein 1 TF families that regulate cell cycle, proliferation, and apoptosis, implicating them in the development of atherosclerosis. Importantly, we confirmed the activation of EGR1 as well as the YAP/TAZ complex early (6 h) after onset of OSS in both cultured human vein and artery endothelial cells and, by undertaking luciferase assays, functionally verified their role in RE activation in response to OSS. CONCLUSIONS: Based on the identification and verification of specific responsive REs early upon OSS exposure, we propose an expanded mechanism of how OSS might contribute to the development of atherosclerosis.


Asunto(s)
Aterosclerosis/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Mecanotransducción Celular , Elementos de Respuesta , Factores de Transcripción/metabolismo , Arterias Umbilicales/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/fisiopatología , Células Cultivadas , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Placa Aterosclerótica , Mapas de Interacción de Proteínas , Flujo Sanguíneo Regional , Estrés Mecánico , Factores de Transcripción/genética , Arterias Umbilicales/patología , Arterias Umbilicales/fisiopatología
10.
Bioessays ; 41(3): e1800198, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30805984

RESUMEN

A tree-like hierarchical branching structure is present in many biological systems, such as the kidney, lung, mammary gland, and blood vessels. Most of these organs form through branching morphogenesis, where outward growth results in smaller and smaller branches. However, the blood vasculature is unique in that it exists as two trees (arterial and venous) connected at their tips. Obtaining this organization might therefore require unique developmental mechanisms. As reviewed here, recent data indicate that arterial trees often form in reverse order. Accordingly, initial arterial endothelial cell differentiation occurs outside of arterial vessels. These pre-artery cells then build trees by following a migratory path from smaller into larger arteries, a process guided by the forces imparted by blood flow. Thus, in comparison to other branched organs, arteries can obtain their structure through inward growth and coalescence. Here, new information on the underlying mechanisms is discussed, and how defects can lead to pathologies, such as hypoplastic arteries and arteriovenous malformations.


Asunto(s)
Arterias/embriología , Arterias/crecimiento & desarrollo , Neovascularización Fisiológica , Venas/embriología , Venas/crecimiento & desarrollo , Animales , Diferenciación Celular/fisiología , Movimiento Celular , Plasticidad de la Célula , Células Epiteliales/fisiología , Humanos , Ratones , Morfogénesis , Receptores CXCR4/metabolismo , Receptores Notch/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
12.
Cardiovasc Res ; 114(11): 1411-1421, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30016405

RESUMEN

Modulation of vessel growth holds great promise for treatment of cardiovascular disease. Strategies to promote vascularization can potentially restore function in ischaemic tissues. On the other hand, plaque neovascularization has been shown to associate with vulnerable plaque phenotypes and adverse events. The current lack of clinical success in regulating vascularization illustrates the complexity of the vascularization process, which involves a delicate balance between pro- and anti-angiogenic regulators and effectors. This is compounded by limitations in the models used to study vascularization that do not reflect the eventual clinical target population. Nevertheless, there is a large body of evidence that validate the importance of angiogenesis as a therapeutic concept. The overall aim of this Position Paper of the ESC Working Group of Atherosclerosis and Vascular biology is to provide guidance for the next steps to be taken from pre-clinical studies on vascularization towards clinical application. To this end, the current state of knowledge in terms of therapeutic strategies for targeting vascularization in post-ischaemic disease is reviewed and discussed. A consensus statement is provided on how to optimize vascularization studies for the identification of suitable targets, the use of animal models of disease, and the analysis of novel delivery methods.


Asunto(s)
Enfermedades Cardiovasculares/terapia , Trasplante de Células/métodos , Terapia Genética/métodos , Neovascularización Patológica , Neovascularización Fisiológica , Investigación Biomédica Traslacional/tendencias , Proteínas Angiogénicas/genética , Proteínas Angiogénicas/metabolismo , Animales , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Vasos Sanguíneos/fisiopatología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/fisiopatología , Difusión de Innovaciones , Modelos Animales de Enfermedad , Predicción , Regulación de la Expresión Génica , Humanos , Miocardio/metabolismo , Miocardio/patología , Neovascularización Patológica/genética , Neovascularización Fisiológica/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo , Recuperación de la Función , Transducción de Señal
13.
Curr Opin Hematol ; 25(3): 237-244, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29438260

RESUMEN

PURPOSE OF REVIEW: Mutations in the Endoglin (Eng) gene, an auxiliary receptor in the transforming growth factor beta (TGFß)-superfamily signaling pathway, are responsible for the human vascular disorder hereditary hemorrhagic telangiectasia (HHT) type 1, characterized in part by blood vessel enlargement. A growing body of work has uncovered an autonomous role for Eng in endothelial cells. We will highlight the influence of Eng on distinct cellular behaviors, such as migration and shape control, which are ultimately important for the assignment of proper blood vessel diameters. RECENT FINDINGS: How endothelial cells establish hierarchically ordered blood vessel trees is one of the outstanding questions in vascular biology. Mutations in components of the TGFß-superfamily of signaling molecules disrupt this patterning and cause arteriovenous malformations (AVMs). Eng is a TGFß coreceptor enhancing signaling through the type I receptor Alk1. Recent studies identified bone morphogenetic proteins (BMPs) 9 and 10 as the primary ligands for Alk1/Eng. Importantly, Eng potentiated Alk1 pathway activation downstream of hemodynamic forces. New results furthermore revealed how Eng affects endothelial cell migration and cell shape control in response to these forces, thereby providing new avenues for our understanding of AVM cause. SUMMARY: We will discuss the interplay of Eng and hemodynamic forces, such as shear stress, in relation to Alk1 receptor activation. We will furthermore detail how this signaling pathway influences endothelial cell behaviors important for the establishment of hierarchically ordered blood vessel trees. Finally, we will provide an outlook how these insights might help in developing new therapies for the treatment of HHT.


Asunto(s)
Endoglina , Células Endoteliales , Hemodinámica , Mutación , Transducción de Señal/genética , Telangiectasia Hemorrágica Hereditaria , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Movimiento Celular/genética , Forma de la Célula/genética , Endoglina/genética , Endoglina/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Factor 2 de Diferenciación de Crecimiento , Factores de Diferenciación de Crecimiento/genética , Factores de Diferenciación de Crecimiento/metabolismo , Humanos , Telangiectasia Hemorrágica Hereditaria/genética , Telangiectasia Hemorrágica Hereditaria/metabolismo , Telangiectasia Hemorrágica Hereditaria/patología
14.
PLoS One ; 12(8): e0183433, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28817646

RESUMEN

The aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix transcription factor conserved across phyla from flies to humans. Activated by a number of endogenous ligands and environmental toxins, studies on AHR function and gene regulation have largely focused on a toxicological perspective relating to aromatic hydrocarbons generated by human activities and the often-deleterious effects of exposure on vertebrates mediated by AHR activation. A growing body of work has highlighted the importance of AHR in physiologic processes, including immune cell differentiation and vascular patterning. Here we dissect the contribution of the 3 zebrafish AHRs, ahr1a, ahr1b and ahr2, to endothelial cyp1a1/b1 gene regulation under physiologic conditions and upon exposure to the AHR ligand Beta-naphthoflavone. We show that in fish multiple AHRs are functional in the vasculature, with vessel-specific differences in the ability of ahr1b to compensate for the loss of ahr2 to maintain AHR signaling. We further provide evidence that AHR can regulate the expression of the chemokine receptor cxcr4a in endothelial cells, a regulatory mechanism that may provide insight into AHR function in the endothelium.


Asunto(s)
Endotelio Vascular/metabolismo , Receptores de Hidrocarburo de Aril/genética , Transcripción Genética , Pez Cebra/genética , Animales , Sistema Enzimático del Citocromo P-450/genética , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Mutagénesis , Pez Cebra/embriología
15.
Nat Cell Biol ; 19(8): 928-940, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28714969

RESUMEN

Angiogenic sprouting needs to be tightly controlled. It has been suggested that the Notch ligand dll4 expressed in leading tip cells restricts angiogenesis by activating Notch signalling in trailing stalk cells. Here, we show using live imaging in zebrafish that activation of Notch signalling is rather required in tip cells. Notch activation initially triggers expression of the chemokine receptor cxcr4a. This allows for proper tip cell migration and connection to the pre-existing arterial circulation, ultimately establishing functional arterial-venous blood flow patterns. Subsequently, Notch signalling reduces cxcr4a expression, thereby preventing excessive blood vessel growth. Finally, we find that Notch signalling is dispensable for limiting blood vessel growth during venous plexus formation that does not generate arteries. Together, these findings link the role of Notch signalling in limiting angiogenesis to its role during artery formation and provide a framework for our understanding of the mechanisms underlying blood vessel network expansion and maturation.


Asunto(s)
Arterias/metabolismo , Células Endoteliales/metabolismo , Proteínas de Homeodominio/metabolismo , Neovascularización Fisiológica , Proteínas del Tejido Nervioso/metabolismo , Receptor Notch1/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Arterias/citología , Movimiento Celular , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Genotipo , Proteínas de Homeodominio/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Fluorescente , Microscopía por Video , Proteínas del Tejido Nervioso/genética , Fenotipo , Receptor Notch1/genética , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transducción de Señal , Factores de Tiempo , Imagen de Lapso de Tiempo , Transfección , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
16.
PLoS One ; 12(5): e0178274, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28562620

RESUMEN

Reprimo (RPRM), a member of the RPRM gene family, is a tumor-suppressor gene involved in the regulation of the p53-mediated cell cycle arrest at G2/M. RPRM has been associated with malignant tumor progression and proposed as a potential biomarker for early cancer detection. However, the expression and role of RPRM, as well as its family, are poorly understood and their physiology is as yet unstudied. In this scenario, a model system like the zebrafish could serve to dissect the role of the RPRM family members in vivo. Phylogenetic analysis reveals that RPRM and RPRML have been differentially retained by most species throughout vertebrate evolution, yet RPRM3 has been retained only in a small group of distantly related species, including zebrafish. Herein, we characterized the spatiotemporal expression of RPRM (present in zebrafish as an infraclass duplication rprma/rprmb), RPRML and RPRM3 in the zebrafish. By whole-mount in situ hybridization (WISH) and fluorescent in situ hybridization (FISH), we demonstrate that rprm (rprma/rprmb) and rprml show a similar spatiotemporal expression profile during zebrafish development. At early developmental stages rprmb is expressed in somites. After one day post-fertilization, rprm (rprma/rprmb) and rprml are expressed in the notochord, brain, blood vessels and digestive tube. On the other hand, rprm3 shows the most unique expression profile, being expressed only in the central nervous system (CNS). We assessed the expression patterns of RPRM gene transcripts in adult zebrafish and human RPRM protein product in tissue samples by RT-qPCR and immunohistochemistry (IHC) staining, respectively. Strikingly, tissue-specific expression patterns of the RPRM transcripts and protein are conserved between zebrafish and humans. We propose the zebrafish as a powerful tool to elucidate the both physiological and pathological roles of the RPRM gene family.


Asunto(s)
Proteínas de Ciclo Celular/genética , Regulación de la Expresión Génica , Glicoproteínas/genética , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Regulación del Desarrollo de la Expresión Génica , Humanos , Hibridación in Situ , Hibridación Fluorescente in Situ , Homología de Secuencia de Aminoácido , Pez Cebra/embriología
17.
Nat Cell Biol ; 19(6): 653-665, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28530658

RESUMEN

The hierarchical organization of properly sized blood vessels ensures the correct distribution of blood to all organs of the body, and is controlled via haemodynamic cues. In current concepts, an endothelium-dependent shear stress set point causes blood vessel enlargement in response to higher flow rates, while lower flow would lead to blood vessel narrowing, thereby establishing homeostasis. We show that during zebrafish embryonic development increases in flow, after an initial expansion of blood vessel diameters, eventually lead to vessel contraction. This is mediated via endothelial cell shape changes. We identify the transforming growth factor beta co-receptor endoglin as an important player in this process. Endoglin mutant cells and blood vessels continue to enlarge in response to flow increases, thus exacerbating pre-existing embryonic arterial-venous shunts. Together, our data suggest that cell shape changes in response to biophysical cues act as an underlying principle allowing for the ordered patterning of tubular organs.


Asunto(s)
Forma de la Célula , Endoglina/metabolismo , Células Endoteliales/metabolismo , Hemodinámica , Mecanotransducción Celular , Proteínas de Pez Cebra/metabolismo , Animales , Malformaciones Arteriovenosas/genética , Malformaciones Arteriovenosas/metabolismo , Malformaciones Arteriovenosas/fisiopatología , Endoglina/deficiencia , Endoglina/genética , Predisposición Genética a la Enfermedad , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones Noqueados , Mutación , Neovascularización Fisiológica , Fenotipo , Flujo Sanguíneo Regional , Estrés Mecánico , Factores de Tiempo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
18.
Nat Commun ; 7: 11268, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27068353

RESUMEN

G protein-coupled receptor (GPCR) signalling, including that involving apelin (APLN) and its receptor APLNR, is known to be important in vascular development. How this ligand-receptor pair regulates the downstream signalling cascades in this context remains poorly understood. Here, we show that mice with Apln, Aplnr or endothelial-specific Aplnr deletion develop profound retinal vascular defects, which are at least in part due to dysregulated increase in endothelial CXCR4 expression. Endothelial CXCR4 is negatively regulated by miR-139-5p, whose transcription is in turn induced by laminar flow and APLN/APLNR signalling. Inhibition of miR-139-5p in vivo partially phenocopies the retinal vascular defects of APLN/APLNR deficiency. Pharmacological inhibition of CXCR4 signalling or augmentation of the miR-139-5p-CXCR4 axis can ameliorate the vascular phenotype of APLN/APLNR deficient state. Overall, we identify an important microRNA-mediated GPCR crosstalk, which plays a key role in vascular development.


Asunto(s)
MicroARNs/metabolismo , Receptor Cross-Talk , Receptores CXCR4/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Vasos Retinianos/crecimiento & desarrollo , Vasos Retinianos/metabolismo , Adipoquinas/metabolismo , Animales , Apelina , Receptores de Apelina , Atorvastatina/farmacología , Regulación hacia Abajo , Células Endoteliales/metabolismo , Hemorreología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , Fenotipo
19.
Nat Protoc ; 10(12): 2064-73, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26584446

RESUMEN

Zebrafish possess the remarkable ability to regenerate a vast variety of tissues, even as adults. However, direct imaging of regenerative processes in adult zebrafish remains challenging because of the lack of suitable anesthesia protocols. Here we present a description of an intubation-based anesthesia procedure that we developed to enable us to image regenerating zebrafish fins and which can be used to continuously anesthetize adult zebrafish for up to 2 d. Fish are immobilized in an imaging chamber followed by oral intubation. Subsequent delivery of anesthetic-containing water is achieved via a peristaltic pump. The setup of the system will take ∼90 min for two adult zebrafish, and it requires only a little previous experience of working with zebrafish. Our protocol will enable the imaging of regenerative processes in the fin and other tissues, and the investigation of processes that require long-term anesthesia, such as immune responses and surgical procedures.


Asunto(s)
Aletas de Animales/fisiología , Microscopía Confocal/métodos , Imagen de Lapso de Tiempo/métodos , Pez Cebra/fisiología , Anestesia/métodos , Anestesiología/instrumentación , Aletas de Animales/citología , Aletas de Animales/ultraestructura , Animales , Movimiento Celular , Diseño de Equipo , Femenino , Intubación/instrumentación , Intubación/métodos , Masculino , Microscopía Confocal/instrumentación , Regeneración , Imagen de Lapso de Tiempo/instrumentación
20.
Curr Opin Cell Biol ; 36: 86-92, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26241634

RESUMEN

The coordinated migration of endothelial cells (ECs) plays a pivotal role not only in the assembly of the embryonic vasculature, but also during various physiological and pathological processes, such as tissue regeneration and wound healing. Recent reports studying EC migration in distinct vascular beds have revealed common principles, but also surprising differences, in the molecules ECs use to ensure proper migratory behaviors. In addition to genetic cues, hemodynamic forces in perfused blood vessels also affect EC migration, thereby contributing to blood vessel remodeling. In this review, we will discuss the distinct molecules guiding EC migration in different tissues and highlight their modes of action.


Asunto(s)
Movimiento Celular , Células Endoteliales/metabolismo , Transducción de Señal , Animales , Células Endoteliales/citología , Neovascularización Fisiológica , Cicatrización de Heridas , Proteínas de Unión al GTP rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...