Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 23257, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853427

RESUMEN

The aim of this study was to investigate effects of high LET α-radiation in combination with inhibitors of DDR (DNA-PK and ATM) and to compare the effect with the radiosensitizing effect of low LET X-ray radiation. The various cell lines were irradiated with α-radiation and with X-ray. Clonogenic survival, the formation of micronuclei and cell cycle distribution were studied after combining of radiation with DDR inhibitors. The inhibitors sensitized different cancer cell lines to radiation. DNA-PKi affected survival rates in combination with α-radiation in selected cell lines. The sensitization enhancement ratios were in the range of 1.6-1.85 in cancer cells. ATMi sensitized H460 cells and significantly increased the micronucleus frequency for both radiation qualities. ATMi in combination with α-radiation reduced survival of HEK293. A significantly elicited cell cycle arrest in G2/M phase after co-treatment of ATMi with α-radiation and X-ray. The most prominent treatment effect was observed in the HEK293 by combining α-radiation and inhibitions. ATMi preferentially sensitized cancer cells and normal HEK293 cells to α-radiation. DNA-PKi and ATMi can sensitize cancer cells to X-ray, but the effectiveness was dependent on cancer cells itself. α-radiation reduced proliferation in primary fibroblast without G2/M arrest.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/farmacología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Proteína Quinasa Activada por ADN/farmacología , Tolerancia a Radiación/efectos de los fármacos , Fármacos Sensibilizantes a Radiaciones/farmacología , Partículas alfa , Ciclo Celular/efectos de los fármacos , Ciclo Celular/efectos de la radiación , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células HEK293 , Histonas/metabolismo , Humanos , Transferencia Lineal de Energía , Pruebas de Micronúcleos , Radiación Ionizante , Radiometría , Rayos X
2.
J Med Chem ; 64(17): 12723-12737, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34428039

RESUMEN

Eukaryotes have evolved two major pathways to repair potentially lethal DNA double-strand breaks. Homologous recombination represents a precise, DNA-template-based mechanism available during the S and G2 cell cycle phase, whereas non-homologous end joining, which requires DNA-dependent protein kinase (DNA-PK), allows for fast, cell cycle-independent but less accurate DNA repair. Here, we report the discovery of BAY-8400, a novel selective inhibitor of DNA-PK. Starting from a triazoloquinoxaline, which had been identified as a hit from a screen for ataxia telangiectasia and Rad3-related protein (ATR) inhibitors with inhibitory activity against ATR, ATM, and DNA-PK, lead optimization efforts focusing on potency and selectivity led to the discovery of BAY-8400. In in vitro studies, BAY-8400 showed synergistic activity of DNA-PK inhibition with DNA damage-inducing targeted alpha therapy. Combination of PSMA-targeted thorium-227 conjugate BAY 2315497 treatment of human prostate tumor-bearing mice with BAY-8400 oral treatment increased antitumor efficacy, as compared to PSMA-targeted thorium-227 conjugate monotherapy.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Proteína Quinasa Activada por ADN/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Animales , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular , Proteína Quinasa Activada por ADN/genética , Sinergismo Farmacológico , Quimioterapia Combinada , Hepatocitos/efectos de los fármacos , Humanos , Ratones , Estructura Molecular , Fosfatidilinositol 3-Quinasas/genética , Ratas , Relación Estructura-Actividad , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
3.
J Med Chem ; 64(15): 11651-11674, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34264057

RESUMEN

Selective inhibition of exclusively transcription-regulating positive transcription elongation factor b/CDK9 is a promising new approach in cancer therapy. Starting from atuveciclib, the first selective CDK9 inhibitor to enter clinical development, lead optimization efforts aimed at identifying intravenously (iv) applicable CDK9 inhibitors with an improved therapeutic index led to the discovery of the highly potent and selective clinical candidate VIP152. The evaluation of various scaffold hops was instrumental in the identification of VIP152, which is characterized by the underexplored benzyl sulfoximine group. VIP152 exhibited the best preclinical overall profile in vitro and in vivo, including high efficacy and good tolerability in xenograft models in mice and rats upon once weekly iv administration. VIP152 has entered clinical trials for the treatment of cancer with promising longterm, durable monotherapy activity in double-hit diffuse large B-cell lymphoma patients.


Asunto(s)
Antineoplásicos/farmacología , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Descubrimiento de Drogas , Leucemia Mieloide Aguda/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Quinasa 9 Dependiente de la Ciclina/metabolismo , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Inyecciones Intravenosas , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Ratones , Ratones Desnudos , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/química , Ratas , Relación Estructura-Actividad
4.
Cell Rep ; 36(3): 109394, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34289372

RESUMEN

Novel treatment options for metastatic colorectal cancer (CRC) are urgently needed to improve patient outcome. Here, we screen a library of non-characterized small molecules against a heterogeneous collection of patient-derived CRC spheroids. By prioritizing compounds with inhibitory activity in a subset of-but not all-spheroid cultures, NCT02 is identified as a candidate with minimal risk of non-specific toxicity. Mechanistically, we show that NCT02 acts as molecular glue that induces ubiquitination of cyclin K (CCNK) and proteasomal degradation of CCNK and its complex partner CDK12. Knockout of CCNK or CDK12 decreases proliferation of CRC cells in vitro and tumor growth in vivo. Interestingly, sensitivity to pharmacological CCNK/CDK12 degradation is associated with TP53 deficiency and consensus molecular subtype 4 in vitro and in patient-derived xenografts. We thus demonstrate the efficacy of targeted CCNK/CDK12 degradation for a CRC subset, highlighting the potential of drug-induced proteolysis for difficult-to-treat types of cancer.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Proteolisis , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Autorrenovación de las Células/efectos de los fármacos , Daño del ADN , Femenino , Ensayos Analíticos de Alto Rendimiento , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis/efectos de los fármacos , Proteómica , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de los fármacos
5.
Int J Mol Sci ; 22(11)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070363

RESUMEN

Osteolytic bone disease is a hallmark of multiple myeloma (MM) mediated by MM cell proliferation, increased osteoclast activity, and suppressed osteoblast function. The proteasome inhibitor bortezomib targets MM cells and improves bone health in MM patients. Radium-223 dichloride (radium-223), the first targeted alpha therapy approved, specifically targets bone metastases, where it disrupts the activity of both tumor cells and tumor-supporting bone cells in mouse models of breast and prostate cancer bone metastasis. We hypothesized that radium-223 and bortezomib combination treatment would have additive effects on MM. In vitro experiments revealed that the combination treatment inhibited MM cell proliferation and demonstrated additive efficacy. In the systemic, syngeneic 5TGM1 mouse MM model, both bortezomib and radium-223 decreased the osteolytic lesion area, and their combination was more effective than either monotherapy alone. Bortezomib decreased the number of osteoclasts at the tumor-bone interface, and the combination therapy resulted in almost complete eradication of osteoclasts. Furthermore, the combination therapy improved the incorporation of radium-223 into MM-bearing bone. Importantly, the combination therapy decreased tumor burden and restored body weights in MM mice. These results suggest that the combination of radium-223 with bortezomib could constitute a novel, effective therapy for MM and, in particular, myeloma bone disease.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Mieloma Múltiple , Neoplasias Experimentales , Animales , Bortezomib/farmacología , Línea Celular Tumoral , Humanos , Ratones , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Radioisótopos/farmacología , Radio (Elemento)/farmacología
6.
J Med Chem ; 63(13): 7293-7325, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32502336

RESUMEN

The ATR kinase plays a key role in the DNA damage response by activating essential signaling pathways of DNA damage repair, especially in response to replication stress. Because DNA damage and replication stress are major sources of genomic instability, selective ATR inhibition has been recognized as a promising new approach in cancer therapy. We now report the identification and preclinical evaluation of the novel, clinical ATR inhibitor BAY 1895344. Starting from quinoline 2 with weak ATR inhibitory activity, lead optimization efforts focusing on potency, selectivity, and oral bioavailability led to the discovery of the potent, highly selective, orally available ATR inhibitor BAY 1895344, which exhibited strong monotherapy efficacy in cancer xenograft models that carry certain DNA damage repair deficiencies. Moreover, combination treatment of BAY 1895344 with certain DNA damage inducing chemotherapy resulted in synergistic antitumor activity. BAY 1895344 is currently under clinical investigation in patients with advanced solid tumors and lymphomas (NCT03188965).


Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Morfolinas/administración & dosificación , Morfolinas/farmacocinética , Pirazoles/administración & dosificación , Pirazoles/farmacocinética , Administración Oral , Animales , Antineoplásicos/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/química , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Disponibilidad Biológica , Carboplatino/administración & dosificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Inhibidores del Citocromo P-450 CYP2C8/química , Inhibidores del Citocromo P-450 CYP2C8/farmacología , Reparación del ADN/efectos de los fármacos , Perros , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Estabilidad de Medicamentos , Femenino , Humanos , Ratones SCID , Microsomas Hepáticos/efectos de los fármacos , Morfolinas/química , Pirazoles/química , Ratas Wistar , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
7.
J Med Chem ; 63(15): 8025-8042, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32338514

RESUMEN

Inhibition of monopolar spindle 1 (MPS1) kinase represents a novel approach to cancer treatment: instead of arresting the cell cycle in tumor cells, cells are driven into mitosis irrespective of DNA damage and unattached/misattached chromosomes, resulting in aneuploidy and cell death. Starting points for our optimization efforts with the goal to identify MPS1 inhibitors were two HTS hits from the distinct chemical series "triazolopyridines" and "imidazopyrazines". The major initial issue of the triazolopyridine series was the moderate potency of the HTS hits. The imidazopyrazine series displayed more than 10-fold higher potencies; however, in the early project phase, this series suffered from poor metabolic stability. Here, we outline the evolution of the two hit series to clinical candidates BAY 1161909 and BAY 1217389 and reveal how both clinical candidates bind to the ATP site of MPS1 kinase, while addressing different pockets utilizing different binding interactions, along with their synthesis and preclinical characterization in selected in vivo efficacy models.


Asunto(s)
Antineoplásicos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Descubrimiento de Drogas/métodos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Huso Acromático/efectos de los fármacos , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral , Perros , Femenino , Células HT29 , Células HeLa , Humanos , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Masculino , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Ratas , Ratas Wistar , Huso Acromático/metabolismo , Resultado del Tratamiento
8.
Mol Cancer Ther ; 19(1): 26-38, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31582533

RESUMEN

The DNA damage response (DDR) secures the integrity of the genome of eukaryotic cells. DDR deficiencies can promote tumorigenesis but concurrently may increase dependence on alternative repair pathways. The ataxia telangiectasia and Rad3-related (ATR) kinase plays a central role in the DDR by activating essential signaling pathways of DNA damage repair. Here, we studied the effect of the novel selective ATR kinase inhibitor BAY 1895344 on tumor cell growth and viability. Potent antiproliferative activity was demonstrated in a broad spectrum of human tumor cell lines. BAY 1895344 exhibited strong monotherapy efficacy in cancer xenograft models that carry DNA damage repair deficiencies. The combination of BAY 1895344 with DNA damage-inducing chemotherapy or external beam radiotherapy (EBRT) showed synergistic antitumor activity. Combination treatment with BAY 1895344 and DDR inhibitors achieved strong synergistic antiproliferative activity in vitro, and combined inhibition of ATR and PARP signaling using olaparib demonstrated synergistic antitumor activity in vivo Furthermore, the combination of BAY 1895344 with the novel, nonsteroidal androgen receptor antagonist darolutamide resulted in significantly improved antitumor efficacy compared with respective single-agent treatments in hormone-dependent prostate cancer, and addition of EBRT resulted in even further enhanced antitumor efficacy. Thus, the ATR inhibitor BAY 1895344 may provide new therapeutic options for the treatment of cancers with certain DDR deficiencies in monotherapy and in combination with DNA damage-inducing or DNA repair-compromising cancer therapies by improving their efficacy.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Daño del ADN/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Animales , Femenino , Humanos , Ratones
9.
Sci Rep ; 9(1): 18489, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31811257

RESUMEN

Targeted alpha therapy is an emerging innovative approach for the treatment of advanced cancers, in which targeting agents deliver radionuclides directly to tumors and metastases. The biological effects of α-radiation are still not fully understood - partly due to the lack of sufficiently accurate research methods. The range of α-particles is <100 µm, and therefore, standard in vitro assays may underestimate α-radiation-specific radiation effects. In this report we focus on α-radiation-induced DNA lesions, DNA repair as well as cellular responses to DNA damage. Herein, we used Ra-223 to deliver α-particles to various tumor cells in a Transwell system. We evaluated the time and dose-dependent biological effects of α-radiation on several tumor cell lines by biological endpoints such as clonogenic survival, cell cycle distribution, comet assay, foci analysis for DNA damage, and calculated the absorbed dose by Monte-Carlo simulations. The radiobiological effects of Ra-223 in various tumor cell lines were evaluated using a novel in vitro assay designed to assess α-radiation-mediated effects. The α-radiation induced increasing levels of DNA double-strand breaks (DSBs) as detected by the formation of 53BP1 foci in a time- and dose-dependent manner in tumor cells. Short-term exposure (1-8 h) of different tumor cells to α-radiation was sufficient to double the number of cells in G2/M phase, reduced cell survival to 11-20% and also increased DNA fragmentation measured by tail intensity (from 1.4 to 3.9) dose-dependently. The α-particle component of Ra-223 radiation caused most of the Ra-223 radiation-induced biological effects such as DNA DSBs, cell cycle arrest and micronuclei formation, leading ultimately to cell death. The variable effects of α-radiation onto the different tumor cells demonstrated that tumor cells show diverse sensitivity towards damage caused by α-radiation. If these differences are caused by genetic alterations and if the sensitivity could be modulated by the use of DNA damage repair inhibitors remains a wide field for further investigations.


Asunto(s)
Muerte Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de la radiación , Radio (Elemento) , Ciclo Celular/efectos de la radiación , Línea Celular Tumoral , Relación Dosis-Respuesta en la Radiación , Humanos
10.
Cancer Res ; 79(21): 5640-5651, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31387923

RESUMEN

Targeted α-particle-emitting radionuclides have great potential for the treatment of a broad range of cancers at different stages of progression. A platform that accurately measures cancer cellular sensitivity to α-particle irradiation could guide and accelerate clinical translation. Here, we performed high-content profiling of cellular survival following exposure to α-particles emitted from radium-223 (223Ra) using 28 genetically diverse human tumor cell lines. Significant variation in cellular sensitivity across tumor cells was observed. 223Ra was significantly more potent than sparsely ionizing irradiation, with a median relative biological effectiveness of 10.4 (IQR: 8.4-14.3). Cells that are the most resistant to γ radiation, such as Nrf2 gain-of-function mutant cells, were sensitive to α-particles. Combining these profiling results with genetic features, we identified several somatic copy-number alterations, gene mutations, and the basal expression of gene sets that correlated with radiation survival. Activating mutations in PIK3CA, a frequent event in cancer, decreased sensitivity to 223Ra. The identification of cellular and genetic determinants of sensitivity to 223Ra may guide the clinical incorporation of targeted α-particle emitters in the treatment of several cancer types. SIGNIFICANCE: These findings address limitations in the preclinical guidance and prediction of radionuclide tumor sensitivity by identifying intrinsic cellular and genetic determinants of cancer cell survival following exposure to α-particle irradiation.See related commentary by Sgouros, p. 5479.


Asunto(s)
Partículas alfa , Radiofármacos , Supervivencia Celular , Rayos gamma , Humanos , Radioisótopos
11.
J Nucl Med ; 60(9): 1293-1300, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30850485

RESUMEN

Targeted 227Th conjugates (TTCs) represent a new class of therapeutic radiopharmaceuticals for targeted α-therapy. They comprise the α-emitter 227Th complexed to a 3,2-hydroxypyridinone chelator conjugated to a tumor-targeting monoclonal antibody. The high energy and short range of the α-particles induce antitumor activity, driven by the induction of complex DNA double-strand breaks. We hypothesized that blocking the DNA damage response (DDR) pathway should further sensitize cancer cells by inhibiting DNA repair, thereby increasing the response to TTCs. Methods: This article reports the evaluation of the mesothelin (MSLN)-TTC conjugate (BAY 2287411) in combination with several DDR inhibitors, each of them blocking different DDR pathway enzymes. MSLN is a validated cancer target known to be overexpressed in mesothelioma, ovarian, lung, breast, and pancreatic cancer, with low expression in normal tissue. In vitro cytotoxicity experiments were performed on cancer cell lines by combining the MSLN-TTC with inhibitors of ataxia telangiectasia mutated, ataxia telangiectasia and Rad3-related (ATR), DNA-dependent protein kinase, and poly[adenosine diphosphate ribose] polymerase (PARP) 1/2. Further, we evaluated the antitumor efficacy of the MSLN-TTC in combination with DDR inhibitors in human ovarian cancer xenograft models. Results: Synergistic activity was observed in vitro for all tested inhibitors (inhibitors are denoted herein by the suffix "i") when combined with MSLN-TTC. ATRi and PARPi appeared to induce the strongest increase in potency. Further, in vivo antitumor efficacy of the MSLN-TTC in combination with ATRi or PARPi was investigated in the OVCAR-3 and OVCAR-8 xenograft models in nude mice, demonstrating synergistic antitumor activity for the ATRi combination at doses demonstrated to be nonefficacious when administered as monotherapy. Conclusion: The presented data support the mechanism-based rationale for combining the MSLN-TTC with DDR inhibitors as new treatment strategies in MSLN-positive ovarian cancer.


Asunto(s)
Daño del ADN/efectos de los fármacos , Proteínas Ligadas a GPI/farmacología , Neoplasias Ováricas/diagnóstico por imagen , Radiofármacos/farmacología , Torio/farmacología , Partículas alfa , Animales , Antineoplásicos , Apoptosis , Línea Celular Tumoral , Quelantes/farmacología , Reparación del ADN , Femenino , Xenoinjertos , Humanos , Mesotelina , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Piridonas/farmacología , Distribución Tisular
12.
Proc Natl Acad Sci U S A ; 116(7): 2551-2560, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30683722

RESUMEN

Since the late 1980s, mutations in the RAS genes have been recognized as major oncogenes with a high occurrence rate in human cancers. Such mutations reduce the ability of the small GTPase RAS to hydrolyze GTP, keeping this molecular switch in a constitutively active GTP-bound form that drives, unchecked, oncogenic downstream signaling. One strategy to reduce the levels of active RAS is to target guanine nucleotide exchange factors, which allow RAS to cycle from the inactive GDP-bound state to the active GTP-bound form. Here, we describe the identification of potent and cell-active small-molecule inhibitors which efficiently disrupt the interaction between KRAS and its exchange factor SOS1, a mode of action confirmed by a series of biophysical techniques. The binding sites, mode of action, and selectivity were elucidated using crystal structures of KRASG12C-SOS1, SOS1, and SOS2. By preventing formation of the KRAS-SOS1 complex, these inhibitors block reloading of KRAS with GTP, leading to antiproliferative activity. The final compound 23 (BAY-293) selectively inhibits the KRAS-SOS1 interaction with an IC50 of 21 nM and is a valuable chemical probe for future investigations.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteína SOS1/antagonistas & inhibidores , Línea Celular , Cristalografía por Rayos X , Descubrimiento de Drogas , Transferencia Resonante de Energía de Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Humanos , Unión Proteica , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína SOS1/química , Proteína SOS1/metabolismo , Transducción de Señal
13.
Clin Cancer Res ; 25(4): 1404-1414, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30429199

RESUMEN

PURPOSE: The catalytic function of BUB1 is required for chromosome arm resolution and positioning of the chromosomal passenger complex for resolution of spindle attachment errors and plays only a minor role in spindle assembly checkpoint activation. Here, we present the identification and preclinical pharmacologic profile of the first BUB1 kinase inhibitor with good bioavailability. EXPERIMENTAL DESIGN: The Bayer compound library was screened for BUB1 kinase inhibitors and medicinal chemistry efforts to improve target affinity and physicochemical and pharmacokinetic parameters resulting in the identification of BAY 1816032 were performed. BAY 1816032 was characterized for kinase selectivity, inhibition of BUB1 signaling, and inhibition of tumor cell proliferation alone and in combination with taxanes, ATR, and PARP inhibitors. Effects on tumor growth in vivo were evaluated using human triple-negative breast xenograft models. RESULTS: The highly selective compound BAY 1816032 showed long target residence time and induced chromosome mis-segregation upon combination with low concentrations of paclitaxel. It was synergistic or additive in combination with paclitaxel or docetaxel, as well as with ATR or PARP inhibitors in cellular assays. Tumor xenograft studies demonstrated a strong and statistically significant reduction of tumor size and excellent tolerability upon combination of BAY 1816032 with paclitaxel or olaparib as compared with the respective monotherapies. CONCLUSIONS: Our findings suggest clinical proof-of-concept studies evaluating BAY 1816032 in combination with taxanes or PARP inhibitors to enhance their efficacy and potentially overcome resistance.


Asunto(s)
Resistencia a Antineoplásicos/genética , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Células HeLa , Humanos , Ratones , Neoplasias/genética , Neoplasias/patología , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Taxoides/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Org Biomol Chem ; 17(1): 122-134, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30520931

RESUMEN

Short syntheses of oxa-preussin, racemic preussin and (-)-preussin are reported. Starting from a racemic 3-nonyl-substituted methoxyallene derivative, its lithiation and addition to phenylethanal provided the corresponding allenyl alcohol that was converted into two diastereomeric dihydrofuran derivatives by silver nitrate-catalyzed 5-endo-trig cyclization. The acid hydrolysis of the enol ether moiety gave heterocyclic ketones and subsequent highly stereoselective reductions with l-selectride furnished 2-benzyl-5-nonylfuran-3-ol derivatives in good overall yield. The major all-cis-diastereomer has the skeleton and relative configuration of preussin and is hence called oxa-preussin. An analogous sequence with the same allene, but an N-sulfonyl imine as the electrophile, finally led to racemic preussin. The stereoselectivities of the individual steps are discussed in detail. With an enantiopure 2-benzyl-5-nonylpyrrolidin-3-one intermediate the preparation of (-)-preussin with an enantiomeric ratio of >95 : 5 could be accomplished in a few steps. The sign of the optical rotation of this product finally proved the absolute configurations of its precursors and demonstrated that our chiral auxiliary-based route led to the antipode of the natural product. The cytotoxicity of several of the prepared heterocycles against MCF-7 tumor cells was investigated and five compounds, including racemic and enantiopure (-)-preussin, were identified as highly cytotoxic with IC50 values in the range of 3-6 µM.


Asunto(s)
Alcadienos/química , Anisomicina/análogos & derivados , Alcoholes , Anisomicina/síntesis química , Anisomicina/toxicidad , Catálisis , Citotoxinas/síntesis química , Humanos , Hidrólisis , Concentración 50 Inhibidora , Cetonas , Células MCF-7 , Estereoisomerismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-29666673

RESUMEN

In addition to their canonical roles in regulating cell cycle transition and transcription, cyclin-dependent kinases (CDKs) have been shown to coordinate DNA damage response pathways, suggesting a rational pairing of CDK inhibitors with genotoxic chemotherapeutic agents in the treatment of human malignancies. Here, we report that roniciclib (BAY1000394), a potent pan-CDK inhibitor, displays promising anti-neoplastic activity as a single agent and potentiates cisplatin lethality in preclinical nasopharyngeal carcinoma (NPC) models. Proliferation of the NPC cell lines HONE-1, CNE-2, C666-1, and HK-1 was effectively curbed by roniciclib treatment, with IC50 values between 11 and 38 nmol/L. These anticancer effects were mediated by pleiotropic mechanisms consistent with successful blockade of cell cycle CDKs 1, 2, 3, and 4 and transcriptional CDKs 7 and 9, ultimately resulting in arrest at G1/S and G2/M, downregulation of the transcriptional apparatus, and repression of anti-apoptotic proteins. Considerably enhanced tumor cell apoptosis was achieved following combined treatment with 10 nmol/L roniciclib and 2.0 µmol/L cisplatin; this combination therapy achieved a response over 250% greater than either drug alone. Although roniciclib chemosensitized NPC cells to cisplatin, it did not sensitize untransformed (NP69) cells. The administration of 0.5 mg/kg roniciclib to BALB/c xenograft mice was well tolerated and effectively restrained tumor growth comparable to treatment with 6 mg/kg cisplatin, whereas combining these two agents produced far greater tumor suppression than either of the monotherapies. In summary, these data demonstrate that roniciclib has strong anti-NPC activity and synergizes with cisplatin chemotherapy at clinically relevant doses, thus justifying further evaluation of this combinatorial approach in clinical settings.

16.
ChemMedChem ; 12(21): 1776-1793, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-28961375

RESUMEN

Selective inhibition of exclusively transcription-regulating PTEFb/CDK9 is a promising new approach in cancer therapy. Starting from lead compound BAY-958, lead optimization efforts strictly focusing on kinase selectivity, physicochemical and DMPK properties finally led to the identification of the orally available clinical candidate atuveciclib (BAY 1143572). Structurally characterized by an unusual benzyl sulfoximine group, BAY 1143572 exhibited the best overall profile in vitro and in vivo, including high efficacy and good tolerability in xenograft models in mice and rats. BAY 1143572 is the first potent and highly selective PTEFb/CDK9 inhibitor to enter clinical trials for the treatment of cancer.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Sulfonamidas/uso terapéutico , Triazinas/uso terapéutico , Animales , Sitios de Unión , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Quinasa 9 Dependiente de la Ciclina/metabolismo , Semivida , Células HeLa , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Ratones , Ratones Desnudos , Conformación Molecular , Simulación del Acoplamiento Molecular , Neoplasias/patología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/toxicidad , Estructura Terciaria de Proteína , Ratas , Ratas Desnudas , Relación Estructura-Actividad , Sulfonamidas/química , Sulfonamidas/toxicidad , Trasplante Heterólogo , Triazinas/química , Triazinas/toxicidad
17.
ACS Chem Biol ; 11(6): 1710-9, 2016 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-27090615

RESUMEN

Roniciclib (BAY 1000394) is a type I pan-CDK (cyclin-dependent kinase) inhibitor which has revealed potent efficacy in xenograft cancer models. Here, we show that roniciclib displays prolonged residence times on CDK2 and CDK9, whereas residence times on other CDKs are transient, thus giving rise to a kinetic selectivity of roniciclib. Surprisingly, variation of the substituent at the 5-position of the pyrimidine scaffold results in changes of up to 3 orders of magnitude of the drug-target residence time. CDK2 X-ray cocrystal structures have revealed a DFG-loop adaption for the 5-(trifluoromethyl) substituent, while for hydrogen and bromo substituents the DFG loop remains in its characteristic type I inhibitor position. In tumor cells, the prolonged residence times of roniciclib on CDK2 and CDK9 are reflected in a sustained inhibitory effect on retinoblastoma protein (RB) phosphorylation, indicating that the target residence time on CDK2 may contribute to sustained target engagement and antitumor efficacy.


Asunto(s)
Antineoplásicos/farmacocinética , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacocinética , Pirimidinas/farmacocinética , Sulfóxidos/farmacocinética , Animales , Antineoplásicos/sangre , Antineoplásicos/química , Aurora Quinasa A/antagonistas & inhibidores , Células HeLa , Humanos , Cinética , Células MCF-7 , Ratones , Inhibidores de Proteínas Quinasas/sangre , Inhibidores de Proteínas Quinasas/química , Pirimidinas/sangre , Pirimidinas/química , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Sulfonamidas/farmacocinética , Sulfóxidos/sangre , Sulfóxidos/química
18.
Mol Cancer Ther ; 15(4): 583-92, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26832791

RESUMEN

Monopolar spindle 1 (Mps1) has been shown to function as the key kinase that activates the spindle assembly checkpoint (SAC) to secure proper distribution of chromosomes to daughter cells. Here, we report the structure and functional characterization of two novel selective Mps1 inhibitors, BAY 1161909 and BAY 1217389, derived from structurally distinct chemical classes. BAY 1161909 and BAY 1217389 inhibited Mps1 kinase activity with IC50 values below 10 nmol/L while showing an excellent selectivity profile. In cellular mechanistic assays, both Mps1 inhibitors abrogated nocodazole-induced SAC activity and induced premature exit from mitosis ("mitotic breakthrough"), resulting in multinuclearity and tumor cell death. Both compounds efficiently inhibited tumor cell proliferation in vitro (IC50 nmol/L range). In vivo, BAY 1161909 and BAY 1217389 achieved moderate efficacy in monotherapy in tumor xenograft studies. However, in line with its unique mode of action, when combined with paclitaxel, low doses of Mps1 inhibitor reduced paclitaxel-induced mitotic arrest by the weakening of SAC activity. As a result, combination therapy strongly improved efficacy over paclitaxel or Mps1 inhibitor monotreatment at the respective MTDs in a broad range of xenograft models, including those showing acquired or intrinsic paclitaxel resistance. Both Mps1 inhibitors showed good tolerability without adding toxicity to paclitaxel monotherapy. These preclinical findings validate the innovative concept of SAC abrogation for cancer therapy and justify clinical proof-of-concept studies evaluating the Mps1 inhibitors BAY 1161909 and BAY 1217389 in combination with antimitotic cancer drugs to enhance their efficacy and potentially overcome resistance. Mol Cancer Ther; 15(4); 583-92. ©2016 AACR.


Asunto(s)
Antineoplásicos/farmacología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Animales , Antineoplásicos/química , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Activación Enzimática/efectos de los fármacos , Femenino , Humanos , Masculino , Ratones , Mitosis/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Ratas , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Elife ; 52016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26885717

RESUMEN

The kinase Bub1 functions in the spindle assembly checkpoint (SAC) and in chromosome congression, but the role of its catalytic activity remains controversial. Here, we use two novel Bub1 inhibitors, BAY-320 and BAY-524, to demonstrate potent Bub1 kinase inhibition both in vitro and in intact cells. Then, we compared the cellular phenotypes of Bub1 kinase inhibition in HeLa and RPE1 cells with those of protein depletion, indicative of catalytic or scaffolding functions, respectively. Bub1 inhibition affected chromosome association of Shugoshin and the chromosomal passenger complex (CPC), without abolishing global Aurora B function. Consequently, inhibition of Bub1 kinase impaired chromosome arm resolution but exerted only minor effects on mitotic progression or SAC function. Importantly, BAY-320 and BAY-524 treatment sensitized cells to low doses of Paclitaxel, impairing both chromosome segregation and cell proliferation. These findings are relevant to our understanding of Bub1 kinase function and the prospects of targeting Bub1 for therapeutic applications.


Asunto(s)
Cromosomas Humanos/metabolismo , Inhibidores Enzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Línea Celular , Humanos
20.
Bioorg Med Chem Lett ; 26(1): 186-93, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26611920

RESUMEN

Recently, we had identified an unexplored pocket adjacent to the known binding site of allosteric MEK inhibitors which allowed us to design highly potent and in vivo efficacious novel inhibitors. We now report that our initial preclinical candidate, featuring a phenoxy side chain with a sulfamide capping group, displayed human carbonic anhydrase off-target activity and species-dependent blood cell accumulation, which prevented us from advancing this candidate further. Since this sulfamide MEK inhibitor displayed an exceptionally favorable PK profile with low brain penetration potential despite being highly oral bioavailable, we elected to keep the sulfamide capping group intact while taming its unwanted off-target activity by optimizing the structural surroundings. Introduction of a neighboring fluorine atom or installation of a methylene linker reduced hCA potency sufficiently, at the cost of MEK target potency. Switching to a higher fluorinated central core reinstated high MEK potency, leading to two new preclinical candidates with long half-lives, high bioavailabilities, low brain penetration potential and convincing efficacy in a K-Ras-mutated A549 xenograft model.


Asunto(s)
Antineoplásicos/farmacología , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Sulfonamidas/farmacología , Regulación Alostérica/efectos de los fármacos , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Disponibilidad Biológica , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Anhidrasas Carbónicas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Semivida , Humanos , Ratones , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacocinética , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química , Sulfonamidas/farmacocinética , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...