Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(11): e21203, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37885719

RESUMEN

Recent developments in technology and research have offered a wide variety of new techniques for image and data analysis within the medical field. Medical research helps doctors and researchers acquire not only knowledge about health and new diseases, but also techniques of prevention and treatment. In particular, radiomic analysis is mainly used to extract quantitative data from medical images and to build a model strong enough to diagnose focal diseases. However, finding a model capable to fit all patient situations is not an easy task. In this paper frame prediction models and classification models are reported in order to predict the evolution of a given data series and determine whether an anomaly exists or not. This article also shows how to build and make use of a convolutional neural network-based architecture aiming to accomplish prediction task for medical images, not only using common computer tomography scans, but also 3D volumes.

2.
PLoS One ; 17(10): e0276941, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36315481

RESUMEN

Currently there are around 466 million hard of hearing people and this amount is expected to grow in the coming years. Despite the efforts that have been made, there is a communication barrier between deaf and hard of hearing signers and non-signers in environments without an interpreter. Different approaches have been developed lately to try to deal with this issue. In this work, we present an Argentinian Sign Language (LSA) recognition system which uses hand landmarks extracted from videos of the LSA64 dataset in order to distinguish between different signs. Different features are extracted from the signals created with the hand landmarks values, which are first transformed by the Common Spatial Patterns (CSP) algorithm. CSP is a dimensionality reduction algorithm and it has been widely used for EEG systems. The features extracted from the transformed signals have been then used to feed different classifiers, such as Random Forest (RF), K-Nearest Neighbors (KNN) or Multilayer Perceptron (MLP). Several experiments have been performed from which promising results have been obtained, achieving accuracy values between 0.90 and 0.95 on a set of 42 signs.


Asunto(s)
Sordera , Lengua de Signos , Humanos , Reconocimiento en Psicología
3.
Front Neurosci ; 16: 889725, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35801180

RESUMEN

Simultaneous mapping of multiple behavioral domains into brain networks remains a major challenge. Here, we shed some light on this problem by employing a combination of machine learning, structural and functional brain networks at different spatial resolutions (also known as scales), together with performance scores across multiple neurobehavioral domains, including sensation, motor skills, and cognition. Provided by the Human Connectome Project, we make use of three cohorts: 640 participants for model training, 160 subjects for validation, and 200 subjects for model performance testing thus enhancing prediction generalization. Our modeling consists of two main stages, namely dimensionality reduction in brain network features at multiple scales, followed by canonical correlation analysis, which determines an optimal linear combination of connectivity features to predict multiple behavioral performance scores. To assess the differences in the predictive power of each modality, we separately applied three different strategies: structural unimodal, functional unimodal, and multimodal, that is, structural in combination with functional features of the brain network. Our results show that the multimodal association outperforms any of the unimodal analyses. Then, to answer which human brain structures were most involved in predicting multiple behavioral scores, we simulated different synthetic scenarios in which in each case we completely deleted a brain structure or a complete resting state network, and recalculated performance in its absence. In deletions, we found critical structures to affect performance when predicting single behavioral domains, but this occurred in a lesser manner for prediction of multi-domain behavior. Overall, our results confirm that although there are synergistic contributions between brain structure and function that enhance behavioral prediction, brain networks may also be mutually redundant in predicting multidomain behavior, such that even after deletion of a structure, the connectivity of the others can compensate for its lack in predicting behavior.

4.
Sensors (Basel) ; 23(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36616922

RESUMEN

Random Sample Consensus, most commonly abbreviated as RANSAC, is a robust estimation method for the parameters of a model contaminated by a sizable percentage of outliers. In its simplest form, the process starts with a sampling of the minimum data needed to perform an estimation, followed by an evaluation of its adequacy, and further repetitions of this process until some stopping criterion is met. Multiple variants have been proposed in which this workflow is modified, typically tweaking one or several of these steps for improvements in computing time or the quality of the estimation of the parameters. RANSAC is widely applied in the field of robotics, for example, for finding geometric shapes (planes, cylinders, spheres, etc.) in cloud points or for estimating the best transformation between different camera views. In this paper, we present a review of the current state of the art of RANSAC family methods with a special interest in applications in robotics.


Asunto(s)
Algoritmos , Robótica , Proyectos de Investigación
5.
Sensors (Basel) ; 21(16)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34450916

RESUMEN

Coffee Leaf Rust (CLR) is a fungal epidemic disease that has been affecting coffee trees around the world since the 1980s. The early diagnosis of CLR would contribute strategically to minimize the impact on the crops and, therefore, protect the farmers' profitability. In this research, a cyber-physical data-collection system was developed, by integrating Remote Sensing and Wireless Sensor Networks, to gather data, during the development of the CLR, on a test bench coffee-crop. The system is capable of automatically collecting, structuring, and locally and remotely storing reliable multi-type data from different field sensors, Red-Green-Blue (RGB) and multi-spectral cameras (RE and RGN). In addition, a data-visualization dashboard was implemented to monitor the data-collection routines in real-time. The operation of the data collection system allowed to create a three-month size dataset that can be used to train CLR diagnosis machine learning models. This result validates that the designed system can collect, store, and transfer reliable data of a test bench coffee-crop towards CLR diagnosis.


Asunto(s)
Basidiomycota , Café , Recolección de Datos , Enfermedades de las Plantas , Tecnología de Sensores Remotos
6.
Sensors (Basel) ; 21(9)2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33923203

RESUMEN

The possibility of measuring in real time the different types of analytes present in food is becoming a requirement in food industry. In this context, biosensors are presented as an alternative to traditional analytical methodologies due to their specificity, high sensitivity and ability to work in real time. It has been observed that the behavior of the analysis curves of the biosensors follow a trend that is reproducible among all the measurements and that is specific to the reaction that occurs in the electrochemical cell and the analyte being analyzed. Kinetic reaction modeling is a widely used method to model processes that occur within the sensors, and this leads to the idea that a mathematical approximation can mimic the electrochemical reaction that takes place while the analysis of the sample is ongoing. For this purpose, a novel mathematical model is proposed to approximate the enzymatic reaction within the biosensor in real time, so the output of the measurement can be estimated in advance. The proposed model is based on adjusting an exponential decay model to the response of the biosensors using a nonlinear least-square method to minimize the error. The obtained results show that our proposed approach is capable of reducing about 40% the required measurement time in the sample analysis phase, while keeping the error rate low enough to meet the accuracy standards of the food industry.


Asunto(s)
Técnicas Biosensibles , Cinética , Modelos Teóricos , Oxidación-Reducción
7.
Sensors (Basel) ; 21(4)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557360

RESUMEN

Deep learning methods have been successfully applied to image processing, mainly using 2D vision sensors. Recently, the rise of depth cameras and other similar 3D sensors has opened the field for new perception techniques. Nevertheless, 3D convolutional neural networks perform slightly worse than other 3D deep learning methods, and even worse than their 2D version. In this paper, we propose to improve 3D deep learning results by transferring the pretrained weights learned in 2D networks to their corresponding 3D version. Using an industrial object recognition context, we have analyzed different combinations of 3D convolutional networks (VGG16, ResNet, Inception ResNet, and EfficientNet), comparing the recognition accuracy. The highest accuracy is obtained with EfficientNetB0 using extrusion with an accuracy of 0.9217, which gives comparable results to state-of-the art methods. We also observed that the transfer approach enabled to improve the accuracy of the Inception ResNet 3D version up to 18% with respect to the score of the 3D approach alone.

8.
Sensors (Basel) ; 20(21)2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33147788

RESUMEN

Blue agave is an important commercial crop in Mexico, and it is the main source of the traditional mexican beverage known as tequila. The variety of blue agave crop known as Tequilana Weber is a crucial element for tequila agribusiness and the agricultural economy in Mexico. The number of agave plants in the field is one of the main parameters for estimating production of tequila. In this manuscript, we describe a mathematical morphology-based algorithm that addresses the agave automatic counting task. The proposed methodology was applied to a set of real images collected using an Unmanned Aerial Vehicle equipped with a digital Red-Green-Blue (RGB) camera. The number of plants automatically identified in the collected images was compared to the number of plants counted by hand. Accuracy of the proposed algorithm depended on the size heterogeneity of plants in the field and illumination. Accuracy ranged from 0.8309 to 0.9806, and performance of the proposed algorithm was satisfactory.

9.
Sensors (Basel) ; 20(8)2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344755

RESUMEN

Action recognition in robotics is a research field that has gained momentum in recent years. In this work, a video activity recognition method is presented, which has the ultimate goal of endowing a robot with action recognition capabilities for a more natural social interaction. The application of Common Spatial Patterns (CSP), a signal processing approach widely used in electroencephalography (EEG), is presented in a novel manner to be used in activity recognition in videos taken by a humanoid robot. A sequence of skeleton data is considered as a multidimensional signal and filtered according to the CSP algorithm. Then, characteristics extracted from these filtered data are used as features for a classifier. A database with 46 individuals performing six different actions has been created to test the proposed method. The CSP-based method along with a Linear Discriminant Analysis (LDA) classifier has been compared to a Long Short-Term Memory (LSTM) neural network, showing that the former obtains similar or better results than the latter, while being simpler.


Asunto(s)
Redes Neurales de la Computación , Robótica , Algoritmos , Interfaces Cerebro-Computador , Análisis Discriminante , Humanos , Reconocimiento en Psicología , Procesamiento de Señales Asistido por Computador
10.
BMC Bioinformatics ; 21(1): 135, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32264950

RESUMEN

BACKGROUND: Microarray technology provides the expression level of many genes. Nowadays, an important issue is to select a small number of informative differentially expressed genes that provide biological knowledge and may be key elements for a disease. With the increasing volume of data generated by modern biomedical studies, software is required for effective identification of differentially expressed genes. Here, we describe an R package, called ORdensity, that implements a recent methodology (Irigoien and Arenas, 2018) developed in order to identify differentially expressed genes. The benefits of parallel implementation are discussed. RESULTS: ORdensity gives the user the list of genes identified as differentially expressed genes in an easy and comprehensible way. The experimentation carried out in an off-the-self computer with the parallel execution enabled shows an improvement in run-time. This implementation may also lead to an important use of memory load. Results previously obtained with simulated and real data indicated that the procedure implemented in the package is robust and suitable for differentially expressed genes identification. CONCLUSIONS: The new package, ORdensity, offers a friendly and easy way to identify differentially expressed genes, which is very useful for users not familiar with programming. AVAILABILITY: https://github.com/rsait/ORdensity.


Asunto(s)
Interfaz Usuario-Computador , Enfermedad/genética , Regulación de la Expresión Génica , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , RNA-Seq/métodos
11.
Sensors (Basel) ; 19(24)2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31835307

RESUMEN

There is a paradigm shift in current manufacturing needs that is causing a change from the current mass-production-based approach to a mass customization approach where production volumes are smaller and more variable. Current processes are very adapted to the previous paradigm and lack the required flexibility to adapt to the new production needs. To solve this problem, an innovative industrial mobile manipulator is presented. The robot is equipped with a variety of sensors that allow it to perceive its surroundings and perform complex tasks in dynamic environments. Following the current needs of the industry, the robot is capable of autonomous navigation, safely avoiding obstacles. It is flexible enough to be able to perform a wide variety of tasks, being the change between tasks done easily thanks to skills-based programming and the ability to change tools autonomously. In addition, its security systems allow it to share the workspace with human operators. This prototype has been developed as part of THOMAS European project, and it has been tested and demonstrated in real-world manufacturing use cases.

12.
Sensors (Basel) ; 19(14)2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31323804

RESUMEN

Video activity recognition, although being an emerging task, has been the subject of important research efforts due to the importance of its everyday applications. Surveillance by video cameras could benefit greatly by advances in this field. In the area of robotics, the tasks of autonomous navigation or social interaction could also take advantage of the knowledge extracted from live video recording. The aim of this paper is to survey the state-of-the-art techniques for video activity recognition while at the same time mentioning other techniques used for the same task that the research community has known for several years. For each of the analyzed methods, its contribution over previous works and the proposed approach performance are discussed.

13.
PLoS One ; 14(6): e0218181, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31211812

RESUMEN

A brain-computer interface (BCI), based on motor imagery EEG, uses information extracted from the electroencephalography signals generated by a person who intends to perform any action. One of the most important issues of current research is how to detect automatically whether the user intends to send some message to a certain device. This study presents a proposal, based on a hierarchical structured system, for recognising intentional and non-intentional mental tasks on a BCI system by applying machine learning techniques to the EEG signals. First-level clustering is performed to distinguish between intentional control (IC) and non-intentional control (NC) state patterns. Then, the patterns recognised as IC are passed on to a second stage where supervised learning techniques are used to classify them. In BCI applications, it is critical to correctly classify NC states with a low false positive rate (FPR) to avoid undesirable effects. According to the literature, we selected a maximum FPR of 10%. Under these conditions, our proposal achieved an average test accuracy of 66.6%, with an 8.2% FPR, for the BCI competition IIIa dataset. The main contribution of this paper is the hierarchical approach, based on machine learning paradigms, which performs intentional and non-intentional discrimination and, depending on the case, classifies the intended command selected by the user.


Asunto(s)
Interfaces Cerebro-Computador , Encéfalo/fisiología , Imaginación/fisiología , Algoritmos , Bases de Datos Factuales , Electroencefalografía , Humanos , Aprendizaje Automático , Reconocimiento en Psicología
14.
PLoS One ; 13(2): e0191417, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29444160

RESUMEN

Music genre classification is a challenging research concept, for which open questions remain regarding classification approach, music piece representation, distances between/within genres, and so on. In this paper an investigation on the classification of generated music pieces is performed, based on the idea that grouping close related known pieces in different sets -or clusters- and then generating in an automatic way a new song which is somehow "inspired" in each set, the new song would be more likely to be classified as belonging to the set which inspired it, based on the same distance used to separate the clusters. Different music pieces representations and distances among pieces are used; obtained results are promising, and indicate the appropriateness of the used approach even in a such a subjective area as music genre classification is.


Asunto(s)
Clasificación/métodos , Música , Percepción de la Altura Tonal/clasificación , Estimulación Acústica/métodos , Percepción Auditiva/fisiología , Análisis por Conglomerados , Humanos , Percepción de la Altura Tonal/fisiología
15.
Sensors (Basel) ; 17(6)2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28621740

RESUMEN

The use of Unmanned Aerial Vehicles (UAVs) based on remote sensing has generated low cost monitoring, since the data can be acquired quickly and easily. This paper reports the experience related to agave crop analysis with a low cost UAV. The data were processed by traditional photogrammetric flow and data extraction techniques were applied to extract new layers and separate the agave plants from weeds and other elements of the environment. Our proposal combines elements of photogrammetry, computer vision, data mining, geomatics and computer science. This fusion leads to very interesting results in agave control. This paper aims to demonstrate the potential of UAV monitoring in agave crops and the importance of information processing with reliable data flow.

16.
Sensors (Basel) ; 16(1)2015 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-26712757

RESUMEN

In this paper, a new supervised classification paradigm, called classifier subset selection for stacked generalization (CSS stacking), is presented to deal with speech emotion recognition. The new approach consists of an improvement of a bi-level multi-classifier system known as stacking generalization by means of an integration of an estimation of distribution algorithm (EDA) in the first layer to select the optimal subset from the standard base classifiers. The good performance of the proposed new paradigm was demonstrated over different configurations and datasets. First, several CSS stacking classifiers were constructed on the RekEmozio dataset, using some specific standard base classifiers and a total of 123 spectral, quality and prosodic features computed using in-house feature extraction algorithms. These initial CSS stacking classifiers were compared to other multi-classifier systems and the employed standard classifiers built on the same set of speech features. Then, new CSS stacking classifiers were built on RekEmozio using a different set of both acoustic parameters (extended version of the Geneva Minimalistic Acoustic Parameter Set (eGeMAPS)) and standard classifiers and employing the best meta-classifier of the initial experiments. The performance of these two CSS stacking classifiers was evaluated and compared. Finally, the new paradigm was tested on the well-known Berlin Emotional Speech database. We compared the performance of single, standard stacking and CSS stacking systems using the same parametrization of the second phase. All of the classifications were performed at the categorical level, including the six primary emotions plus the neutral one.


Asunto(s)
Emociones/clasificación , Aprendizaje Automático , Reconocimiento de Normas Patrones Automatizadas/métodos , Habla/clasificación , Femenino , Humanos , Masculino
17.
PLoS One ; 9(10): e108975, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25279686

RESUMEN

Study of emotions in human-computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested.


Asunto(s)
Emociones , Aprendizaje Automático , Reconocimiento de Normas Patrones Automatizadas/métodos , Habla , Interfaz Usuario-Computador , Algoritmos , Humanos
18.
ScientificWorldJournal ; 2014: 730712, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24778600

RESUMEN

In the problem of one-class classification (OCC) one of the classes, the target class, has to be distinguished from all other possible objects, considered as nontargets. In many biomedical problems this situation arises, for example, in diagnosis, image based tumor recognition or analysis of electrocardiogram data. In this paper an approach to OCC based on a typicality test is experimentally compared with reference state-of-the-art OCC techniques--Gaussian, mixture of Gaussians, naive Parzen, Parzen, and support vector data description-using biomedical data sets. We evaluate the ability of the procedures using twelve experimental data sets with not necessarily continuous data. As there are few benchmark data sets for one-class classification, all data sets considered in the evaluation have multiple classes. Each class in turn is considered as the target class and the units in the other classes are considered as new units to be classified. The results of the comparison show the good performance of the typicality approach, which is available for high dimensional data; it is worth mentioning that it can be used for any kind of data (continuous, discrete, or nominal), whereas state-of-the-art approaches application is not straightforward when nominal variables are present.


Asunto(s)
Algoritmos , Investigación Biomédica/estadística & datos numéricos , Interpretación Estadística de Datos , Modelos Biológicos , Humanos , Reproducibilidad de los Resultados
19.
Sensors (Basel) ; 13(11): 14687-713, 2013 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-24172285

RESUMEN

Detecting people is a key capability for robots that operate in populated environments. In this paper, we have adopted a hierarchical approach that combines classifiers created using supervised learning in order to identify whether a person is in the view-scope of the robot or not. Our approach makes use of vision, depth and thermal sensors mounted on top of a mobile platform. The set of sensors is set up combining the rich data source offered by a Kinect sensor, which provides vision and depth at low cost, and a thermopile array sensor. Experimental results carried out with a mobile platform in a manufacturing shop floor and in a science museum have shown that the false positive rate achieved using any single cue is drastically reduced. The performance of our algorithm improves other well-known approaches, such as C4 and histogram of oriented gradients (HOG).


Asunto(s)
Monitoreo del Ambiente/instrumentación , Procesamiento de Imagen Asistido por Computador/instrumentación , Robótica/instrumentación , Termografía/instrumentación , Algoritmos , Bases de Datos Factuales , Monitoreo del Ambiente/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Reproducibilidad de los Resultados , Máquina de Vectores de Soporte , Termografía/métodos
20.
BMC Bioinformatics ; 13: 30, 2012 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-22330431

RESUMEN

BACKGROUND: Gene expression technologies have opened up new ways to diagnose and treat cancer and other diseases. Clustering algorithms are a useful approach with which to analyze genome expression data. They attempt to partition the genes into groups exhibiting similar patterns of variation in expression level. An important problem associated with gene classification is to discern whether the clustering process can find a relevant partition as well as the identification of new genes classes. There are two key aspects to classification: the estimation of the number of clusters, and the decision as to whether a new unit (gene, tumor sample...) belongs to one of these previously identified clusters or to a new group. RESULTS: ICGE is a user-friendly R package which provides many functions related to this problem: identify the number of clusters using mixed variables, usually found by applied biomedical researchers; detect whether the data have a cluster structure; identify whether a new unit belongs to one of the pre-identified clusters or to a novel group, and classify new units into the corresponding cluster. The functions in the ICGE package are accompanied by help files and easy examples to facilitate its use. CONCLUSIONS: We demonstrate the utility of ICGE by analyzing simulated and real data sets. The results show that ICGE could be very useful to a broad research community.


Asunto(s)
Análisis por Conglomerados , Perfilación de la Expresión Génica/métodos , Neoplasias/genética , Programas Informáticos , Algoritmos , Simulación por Computador , Humanos , Trastornos Linfoproliferativos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...