Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pathogens ; 12(1)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36678448

RESUMEN

Tenacibaculum is a genus of Gram-negative filamentous bacteria with a cosmopolitan distribution. The research describing Tenacibaculum genomes stems primarily from Norway and Chile due to their impacts on salmon aquaculture. Canadian salmon aquaculture also experiences mortality events related to the presence of Tenacibaculum spp., yet no Canadian Tenacibaculum genomes are publicly available. Ribosomal DNA sequencing of 16S and four species-specific 16S quantitative-PCR assays were used to select isolates cultured from Atlantic salmon with mouthrot in British Columbia (BC), Canada. Ten isolates representing four known and two unknown species of Tenacibaculum were selected for shotgun whole genome sequencing using the Oxford Nanopore's MinION platform. The genome assemblies achieved closed circular chromosomes for seven isolates and long contigs for the remaining three isolates. Average nucleotide identity analysis identified T. ovolyticum, T. maritimum, T. dicentrarchi, two genomovars of T. finnmarkense, and two proposed novel species T. pacificus sp. nov. type strain 18-2881-AT and T. retecalamus sp. nov. type strain 18-3228-7BT. Annotation in most of the isolates predicted putative virulence and antimicrobial resistance genes, most-notably toxins (i.e., hemolysins), type-IX secretion systems, and oxytetracycline resistance. Comparative analysis with the T. maritimum type-strain predicted additional toxins and numerous C-terminal secretion proteins, including an M12B family metalloprotease in the T. maritimum isolates from BC. The genomic prediction of virulence-associated genes provides important targets for studies of mouthrot disease, and the annotation of the antimicrobial resistance genes provides targets for surveillance and diagnosis in veterinary medicine.

2.
Elife ; 112022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36346652

RESUMEN

Public health emergencies like SARS, MERS, and COVID-19 have prioritized surveillance of zoonotic coronaviruses, resulting in extensive genomic characterization of coronavirus diversity in bats. Sequencing viral genomes directly from animal specimens remains a laboratory challenge, however, and most bat coronaviruses have been characterized solely by PCR amplification of small regions from the best-conserved gene. This has resulted in limited phylogenetic resolution and left viral genetic factors relevant to threat assessment undescribed. In this study, we evaluated whether a technique called hybridization probe capture can achieve more extensive genome recovery from surveillance specimens. Using a custom panel of 20,000 probes, we captured and sequenced coronavirus genomic material in 21 swab specimens collected from bats in the Democratic Republic of the Congo. For 15 of these specimens, probe capture recovered more genome sequence than had been previously generated with standard amplicon sequencing protocols, providing a median 6.1-fold improvement (ranging up to 69.1-fold). Probe capture data also identified five novel alpha- and betacoronaviruses in these specimens, and their full genomes were recovered with additional deep sequencing. Based on these experiences, we discuss how probe capture could be effectively operationalized alongside other sequencing technologies for high-throughput, genomics-based discovery and surveillance of bat coronaviruses.


Asunto(s)
COVID-19 , Quirópteros , Animales , Filogenia , Variación Genética , Análisis de Secuencia de ADN , Genoma Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...