Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 102021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34779769

RESUMEN

SNARE proteins have been described as the effectors of fusion events in the secretory pathway more than two decades ago. The strong interactions between SNARE domains are clearly important in membrane fusion, but it is unclear whether they are involved in any other cellular processes. Here, we analyzed two classical SNARE proteins, syntaxin 1A and SNAP25. Although they are supposed to be engaged in tight complexes, we surprisingly find them largely segregated in the plasma membrane. Syntaxin 1A only occupies a small fraction of the plasma membrane area. Yet, we find it is able to redistribute the far more abundant SNAP25 on the mesoscale by gathering crowds of SNAP25 molecules onto syntaxin clusters in a SNARE-domain-dependent manner. Our data suggest that SNARE domain interactions are not only involved in driving membrane fusion on the nanoscale, but also play an important role in controlling the general organization of proteins on the mesoscale. Further, we propose these mechanisms preserve active syntaxin 1A-SNAP25 complexes at the plasma membrane.


Asunto(s)
Proteínas SNARE/genética , Proteína 25 Asociada a Sinaptosomas/genética , Sintaxina 1/genética , Animales , Células Hep G2 , Humanos , Células PC12 , Mapas de Interacción de Proteínas , Ratas , Proteínas SNARE/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Sintaxina 1/metabolismo
2.
Sci Rep ; 9(1): 14075, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31575878

RESUMEN

Tetraspanins emerge as a family of membrane proteins mediating an exceptional broad diversity of functions. The naming refers to their four transmembrane segments, which define the tetraspanins' typical membrane topology. In this study, we analyzed alternative splicing of tetraspanins. Besides isoforms with four transmembrane segments, most mRNA sequences are coding for isoforms with one, two or three transmembrane segments, representing structurally mono-, di- and trispanins. Moreover, alternative splicing may alter transmembrane topology, delete parts of the large extracellular loop, or generate alternative N- or C-termini. As a result, we define structure-based classes of non-conventional tetraspanins. The increase in gene products by alternative splicing is associated with an unexpected high structural variability of tetraspanins. We speculate that non-conventional tetraspanins have roles in regulating ER exit and modulating tetraspanin-enriched microdomain function.


Asunto(s)
Empalme Alternativo , Tetraspaninas/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Isomerismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteómica , Relación Estructura-Actividad , Tetraspaninas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...