Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37961505

RESUMEN

Gammaherpesviruses (GHV) are DNA tumor viruses that establish lifelong latent infections in lymphocytes. For viruses such as Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68), this is accomplished through a viral gene-expression program that promotes cellular proliferation and differentiation, especially of germinal center (GC) B cells. Intrinsic host mechanisms that control virus-driven cellular expansion are incompletely defined. Using a small-animal model of GHV pathogenesis, we demonstrate in vivo that tumor suppressor p53 is activated specifically in B cells that are latently infected by MHV68. In the absence of p53, the early expansion of MHV68 latency was greatly increased, especially in GC B cells, a cell-type whose proliferation was conversely restricted by p53. We identify the B cell-specific latency gene M2, a viral promoter of GC B cell differentiation, as a viral protein sufficient to elicit a p53-dependent anti-proliferative response caused by Src-family kinase activation. We further demonstrate that EBV-encoded latent membrane protein 1 (LMP1) similarly triggers a p53 response in primary B cells. Our data highlight a model in which GHV latency gene-expression programs that promote B cell proliferation and differentiation to facilitate viral colonization of the host trigger aberrant cellular proliferation that is controlled by p53. IMPORTANCE: Gammaherpesviruses cause lifelong infections of their hosts, commonly referred to as latency, that can lead to cancer. Latency establishment benefits from the functions of viral proteins that augment and amplify B cell activation, proliferation, and differentiation signals. In uninfected cells, off-schedule cellular differentiation would typically trigger anti-proliferative responses by effector proteins known as tumor suppressors. However, tumor suppressor responses to gammaherpesvirus manipulation of cellular processes remain understudied, especially those that occur during latency establishment in a living organism. Here we identify p53, a tumor suppressor commonly mutated in cancer, as a host factor that limits virus-driven B cell proliferation and differentiation, and thus, viral colonization of a host. We demonstrate that p53 activation occurs in response to viral latency proteins that induce B cell activation. This work informs a gap in our understanding of intrinsic cellular defense mechanisms that restrict lifelong GHV infection.

2.
J Proteome Res ; 20(1): 337-345, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33175545

RESUMEN

Tandem mass tag (TMT)-based mass spectrometry (MS) enables deep proteomic profiling of more than 10,000 proteins in complex biological samples but requires up to 100 µg protein in starting materials during a standard analysis. Here, we present a streamlined protocol to quantify more than 9000 proteins with 0.5 µg protein per sample by 16-plex TMT coupled with two-dimensional liquid chromatography and tandem mass spectrometry (LC/LC-MS/MS). In this protocol, we optimized multiple conditions to reduce sample loss, including processing each sample in a single tube to minimize surface adsorption, increasing digestion enzymes to shorten proteolysis and function as carriers, eliminating a desalting step between digestion and TMT labeling, and developing miniaturized basic pH LC for prefractionation. By profiling 16 identical human brain tissue samples of Alzheimer's disease (AD), vascular dementia (VaD), and non-dementia controls, we directly compared this new microgram-scale protocol to the standard-scale protocol, quantifying 9116 and 10,869 proteins, respectively. Importantly, bioinformatics analysis indicated that the microgram-scale protocol had adequate sensitivity and reproducibility to detect differentially expressed proteins in disease-related pathways. Thus, this newly developed protocol is of general application for deep proteomics analysis of biological and clinical samples at sub-microgram levels.


Asunto(s)
Proteoma , Espectrometría de Masas en Tándem , Cromatografía Liquida , Humanos , Proteómica , Reproducibilidad de los Resultados
4.
Neuron ; 105(6): 975-991.e7, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31926610

RESUMEN

Alzheimer's disease (AD) displays a long asymptomatic stage before dementia. We characterize AD stage-associated molecular networks by profiling 14,513 proteins and 34,173 phosphosites in the human brain with mass spectrometry, highlighting 173 protein changes in 17 pathways. The altered proteins are validated in two independent cohorts, showing partial RNA dependency. Comparisons of brain tissue and cerebrospinal fluid proteomes reveal biomarker candidates. Combining with 5xFAD mouse analysis, we determine 15 Aß-correlated proteins (e.g., MDK, NTN1, SMOC1, SLIT2, and HTRA1). 5xFAD shows a proteomic signature similar to symptomatic AD but exhibits activation of autophagy and interferon response and lacks human-specific deleterious events, such as downregulation of neurotrophic factors and synaptic proteins. Multi-omics integration prioritizes AD-related molecules and pathways, including amyloid cascade, inflammation, complement, WNT signaling, TGF-ß and BMP signaling, lipid metabolism, iron homeostasis, and membrane transport. Some Aß-correlated proteins are colocalized with amyloid plaques. Thus, the multilayer omics approach identifies protein networks during AD progression.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Progresión de la Enfermedad , Redes y Vías Metabólicas , Proteoma/metabolismo , Proteómica , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Mutantes , Persona de Mediana Edad , Fosfoproteínas/metabolismo
5.
PLoS Pathog ; 14(1): e1006865, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29364981

RESUMEN

Gammaherpesvirus (GHV) pathogenesis is a complex process that involves productive viral replication, dissemination to tissues that harbor lifelong latent infection, and reactivation from latency back into a productive replication cycle. Traditional loss-of-function mutagenesis approaches in mice using murine gammaherpesvirus 68 (MHV68), a model that allows for examination of GHV pathogenesis in vivo, have been invaluable for defining requirements for specific viral gene products in GHV infection. But these approaches are insufficient to fully reveal how viral gene products contribute when the encoded protein facilitates multiple processes in the infectious cycle and when these functions vary over time and from one host tissue to another. To address this complexity, we developed an MHV68 genetic platform that enables cell-type-specific and inducible viral gene deletion in vivo. We employed this system to re-evaluate functions of the MHV68 latency-associated nuclear antigen (mLANA), a protein with roles in both viral replication and latency. Cre-mediated deletion in mice of loxP-flanked ORF73 demonstrated the necessity of mLANA in B cells for MHV68 latency establishment. Impaired latency during the transition from draining lymph nodes to blood following mLANA deletion also was observed, supporting the hypothesis that B cells are a major conduit for viral dissemination. Ablation of mLANA in infected germinal center (GC) B cells severely impaired viral latency, indicating the importance of viral passage through the GC for latency establishment. Finally, induced ablation of mLANA during latency resulted in complete loss of affected viral genomes, indicating that mLANA is critically important for maintenance of viral genomes during stable latency. Collectively, these experiments provide new insights into LANA homolog functions in GHV colonization of the host and highlight the potential of a new MHV68 genetic platform to foster a more complete understanding of viral gene functions at discrete stages of GHV pathogenesis.


Asunto(s)
Antígenos Nucleares/genética , Gammaherpesvirinae/genética , Proteínas Virales/genética , Células 3T3 , Animales , Células Cultivadas , Enfermedad Crónica , Embrión de Mamíferos , Femenino , Gammaherpesvirinae/patogenicidad , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/patología , Infecciones por Herpesviridae/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutagénesis/fisiología , Células 3T3 NIH , Especificidad de Órganos , Latencia del Virus/genética
6.
J Virol ; 90(5): 2571-85, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26676792

RESUMEN

UNLABELLED: Tumor suppressor p53 is activated in response to numerous cellular stresses, including viral infection. However, whether murine gammaherpesvirus 68 (MHV68) provokes p53 during the lytic replication cycle has not been extensively evaluated. Here, we demonstrate that MHV68 lytic infection induces p53 phosphorylation and stabilization in a manner that is dependent on the DNA damage response (DDR) kinase ataxia telangiectasia mutated (ATM). The induction of p53 during MHV68 infection occurred in multiple cell types, including splenocytes of infected mice. ATM and p53 activation required early viral gene expression but occurred independently of viral DNA replication. At early time points during infection, p53-responsive cellular genes were induced, coinciding with p53 stabilization and phosphorylation. However, p53-related gene expression subsided as infection progressed, even though p53 remained stable and phosphorylated. Infected cells also failed to initiate p53-dependent gene expression and undergo apoptosis in response to treatment with exogenous p53 agonists. The inhibition of p53 responses during infection required the expression of the MHV68 homologs of the shutoff and exonuclease protein (muSOX) and latency-associated nuclear antigen (mLANA). Interestingly, mLANA, but not muSOX, was necessary to prevent p53-mediated death in MHV68-infected cells under the conditions tested. This suggests that muSOX and mLANA are differentially required for inhibiting p53 in specific settings. These data reveal that DDR responses triggered by MHV68 infection promote p53 activation. However, MHV68 encodes at least two proteins capable of limiting the potential consequences of p53 function. IMPORTANCE: Gammaherpesviruses are oncogenic herpesviruses that establish lifelong chronic infections. Defining how gammaherpesviruses overcome host responses to infection is important for understanding how these viruses infect and cause disease. Here, we establish that murine gammaherpesvirus 68 induces the activation of tumor suppressor p53. p53 activation was dependent on the DNA damage response kinase ataxia telangiectasia mutated. Although active early after infection, p53 became dominantly inhibited as the infection cycle progressed. Viral inhibition of p53 was mediated by the murine gammaherpesvirus 68 homologs of muSOX and mLANA. The inhibition of the p53 pathway enabled infected cells to evade p53-mediated cell death responses. These data demonstrate that a gammaherpesvirus encodes multiple proteins to limit p53-mediated responses to productive viral infection, which likely benefits acute viral replication and the establishment of chronic infection.


Asunto(s)
Interacciones Huésped-Patógeno , Rhadinovirus/fisiología , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteínas Virales/metabolismo , Replicación Viral , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Femenino , Ratones Endogámicos C57BL , Fosforilación , Procesamiento Proteico-Postraduccional
7.
PLoS Pathog ; 9(9): e1003583, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24068923

RESUMEN

Lytic gammaherpesvirus (GHV) replication facilitates the establishment of lifelong latent infection, which places the infected host at risk for numerous cancers. As obligate intracellular parasites, GHVs must control and usurp cellular signaling pathways in order to successfully replicate, disseminate to stable latency reservoirs in the host, and prevent immune-mediated clearance. To facilitate a systems-level understanding of phosphorylation-dependent signaling events directed by GHVs during lytic replication, we utilized label-free quantitative mass spectrometry to interrogate the lytic replication cycle of murine gammaherpesvirus-68 (MHV68). Compared to controls, MHV68 infection regulated by 2-fold or greater ca. 86% of identified phosphopeptides - a regulatory scale not previously observed in phosphoproteomic evaluations of discrete signal-inducing stimuli. Network analyses demonstrated that the infection-associated induction or repression of specific cellular proteins globally altered the flow of information through the host phosphoprotein network, yielding major changes to functional protein clusters and ontologically associated proteins. A series of orthogonal bioinformatics analyses revealed that MAPK and CDK-related signaling events were overrepresented in the infection-associated phosphoproteome and identified 155 host proteins, such as the transcription factor c-Jun, as putative downstream targets. Importantly, functional tests of bioinformatics-based predictions confirmed ERK1/2 and CDK1/2 as kinases that facilitate MHV68 replication and also demonstrated the importance of c-Jun. Finally, a transposon-mutant virus screen identified the MHV68 cyclin D ortholog as a viral protein that contributes to the prominent MAPK/CDK signature of the infection-associated phosphoproteome. Together, these analyses enhance an understanding of how GHVs reorganize and usurp intracellular signaling networks to facilitate infection and replication.


Asunto(s)
Gammaherpesvirinae/fisiología , Interacciones Huésped-Patógeno , Modelos Biológicos , Fosfoproteínas/metabolismo , Transducción de Señal , Proteínas Virales/metabolismo , Replicación Viral , Células 3T3 , Animales , Cromatografía Líquida de Alta Presión , Biología Computacional , Ciclina D/química , Ciclina D/genética , Ciclina D/metabolismo , Gammaherpesvirinae/genética , Infecciones por Herpesviridae/metabolismo , Infecciones por Herpesviridae/virología , Sistema de Señalización de MAP Quinasas , Ratones , Mutación , Fosfoproteínas/química , Fosfoproteínas/genética , Proteoma/química , Proteoma/metabolismo , Proteómica/métodos , Proteínas Proto-Oncogénicas c-jun/química , Proteínas Proto-Oncogénicas c-jun/metabolismo , Espectrometría de Masas en Tándem , Proteínas Virales/química , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...