Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Investig Med ; 68(8): 1309-1316, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33115959

RESUMEN

Although cannabinoid hyperemesis syndrome (CHS) was first reported more than 15 years ago, it still remains an unfamiliar clinical entity among physicians worldwide. CHS is categorized by Rome IV classification as a functional gastroduodenal disorder. It is characterized by stereotypical episodic vomiting in the setting of chronic, daily cannabis use, with cycles decreasing by the cessation of cannabis. CHS is also associated with abdominal pain reduced by hot baths and showers with comparative well-being between attacks. Thus, its clinical presentation resembles 'classic' cyclic vomiting syndrome, but eliciting a cannabis history is crucial in diagnosing this entity. In acute attacks, parenteral benzodiazepines are very effective. For prevention and long-term management, tricyclic antidepressants such as amitriptyline are the mainstay of therapy requiring doses in the range of 50-200 mg/d to achieve symptom control. In addition, counseling to achieve marijuana cessation, accompanied by antianxiety medications, is necessary for sustaining clinical outcomes. Once the patient is in remission and off marijuana for a period of 6-12 months, then tapering the dose of amitriptyline can be implemented, with the goal of no therapy being achieved in the majority of patients over time. With the legalization of marijuana in many states, CHS will become an increasingly prevalent clinical entity, so educating about CHS is an important goal, particularly for emergency department physicians who generally first encounter these patients.


Asunto(s)
Cannabinoides/efectos adversos , Vómitos/inducido químicamente , Vómitos/fisiopatología , Antidepresivos Tricíclicos/uso terapéutico , Humanos , Fenómenos Fisiológicos de la Nutrición , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Resultado del Tratamiento , Vómitos/patología , Vómitos/terapia
2.
Tissue Cell ; 48(6): 577-587, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27837912

RESUMEN

RNA binding proteins (RBPs) regulate gene expression by controlling mRNA export, translation, and stability. When altered, some RBPs allow cancer cells to grow, survive, and metastasize. Cold-inducible RNA binding protein (CIRP) is overexpressed in a subset of breast cancers, induces proliferation in breast cancer cell lines, and inhibits apoptosis. Although studies have begun to examine the role of CIRP in breast and other cancers, its role in normal breast development has not been assessed. We generated a transgenic mouse model overexpressing human CIRP in the mammary epithelium to ask if it plays a role in mammary gland development. Effects of CIRP overexpression on mammary gland morphology, cell proliferation, and apoptosis were studied from puberty through pregnancy, lactation and weaning. There were no gross effects on mammary gland morphology as shown by whole mounts. Immunohistochemistry for the proliferation marker Ki67 showed decreased proliferation during the lactational switch (the transition from pregnancy to lactation) in mammary glands from CIRP transgenic mice. Two markers of apoptosis showed that the transgene did not affect apoptosis during mammary gland involution. These results suggest a potential in vivo function in suppressing proliferation during a specific developmental transition.


Asunto(s)
Proliferación Celular/genética , Glándulas Mamarias Animales/metabolismo , Proteínas de Unión al ARN/biosíntesis , Animales , Apoptosis/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Antígeno Ki-67/biosíntesis , Lactancia/genética , Glándulas Mamarias Animales/crecimiento & desarrollo , Ratones , Ratones Transgénicos , Embarazo , Proteínas de Unión al ARN/genética , Destete
3.
Sci Rep ; 5: 17595, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26626154

RESUMEN

Cell mechanical phenotype or 'mechanotype' is emerging as a valuable label-free biomarker. For example, marked changes in the viscoelastic characteristics of cells occur during malignant transformation and cancer progression. Here we describe a simple and scalable technique to measure cell mechanotype: this parallel microfiltration assay enables multiple samples to be simultaneously measured by driving cell suspensions through porous membranes. To validate the method, we compare the filtration of untransformed and HRas(V12)-transformed murine ovary cells and find significantly increased deformability of the transformed cells. Inducing epithelial-to-mesenchymal transition (EMT) in human ovarian cancer cells by overexpression of key transcription factors (Snail, Slug, Zeb1) or by acquiring drug resistance produces a similar increase in deformability. Mechanistically, we show that EMT-mediated changes in epithelial (loss of E-Cadherin) and mesenchymal markers (vimentin induction) correlate with altered mechanotype. Our results demonstrate a method to screen cell mechanotype that has potential for broader clinical application.


Asunto(s)
Transición Epitelial-Mesenquimal , Filtración/métodos , Proteínas de Neoplasias/biosíntesis , Neoplasias Ováricas , Ovario , Factores de Transcripción/biosíntesis , Animales , Femenino , Células HL-60 , Humanos , Ratones , Proteínas de Neoplasias/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Ovario/metabolismo , Ovario/patología , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...