Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Pharmacol ; 87(1): 1-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25332381

RESUMEN

Inefficiency of oxidative phosphorylation can result from futile leak conductance through the inner mitochondrial membrane. Stress or injury may exacerbate this leak conductance, putting cells, and particularly neurons, at risk of dysfunction and even death when energy demand exceeds cellular energy production. Using a novel method, we have recently described an ion conductance consistent with mitochondrial permeability transition pore (mPTP) within the c-subunit of the ATP synthase. Excitotoxicity, reactive oxygen species-producing stimuli, or elevated mitochondrial matrix calcium opens the channel, which is inhibited by cyclosporine A and ATP/ADP. Here we show that ATP and the neuroprotective drug dexpramipexole (DEX) inhibited an ion conductance consistent with this c-subunit channel (mPTP) in brain-derived submitochondrial vesicles (SMVs) enriched for F1FO ATP synthase (complex V). Treatment of SMVs with urea denatured extramembrane components of complex V, eliminated DEX- but not ATP-mediated current inhibition, and reduced binding of [(14)C]DEX. Direct effects of DEX on the synthesis and hydrolysis of ATP by complex V suggest that interaction of the compound with its target results in functional conformational changes in the enzyme complex. [(14)C]DEX bound specifically to purified recombinant b and oligomycin sensitivity-conferring protein subunits of the mitochondrial F1FO ATP synthase. Previous data indicate that DEX increased the efficiency of energy production in cells, including neurons. Taken together, these studies suggest that modulation of a complex V-associated inner mitochondrial membrane current is metabolically important and may represent an avenue for the development of new therapeutics for neurodegenerative disorders.


Asunto(s)
Benzotiazoles/farmacología , Ciclosporina/farmacología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , ATPasas de Translocación de Protón/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Encéfalo/citología , Encéfalo/enzimología , Humanos , Membranas Mitocondriales/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial , Pramipexol
2.
Brain Res ; 1446: 1-11, 2012 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-22364637

RESUMEN

Cellular stress or injury can result in mitochondrial dysfunction, which has been linked to many chronic neurological disorders including amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Stressed and dysfunctional mitochondria exhibit an increase in large conductance mitochondrial membrane currents and a decrease in bioenergetic efficiency. Inefficient energy production puts cells, and particularly neurons, at risk of death when energy demands exceed cellular energy production. Here we show that the candidate ALS drug dexpramipexole (DEX; KNS-760704; ((6R)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine) and cyclosporine A (CSA) inhibited increases in ion conductance in whole rat brain-derived mitochondria induced by calcium or treatment with a proteasome inhibitor, although only CSA inhibited calcium-induced permeability transition in liver-derived mitochondria. In several cell lines, including cortical neurons in culture, DEX significantly decreased oxygen consumption while maintaining or increasing production of adenosine triphosphate (ATP). DEX also normalized the metabolic profile of injured cells and was protective against the cytotoxic effects of proteasome inhibition. These data indicate that DEX increases the efficiency of oxidative phosphorylation, possibly by inhibition of a CSA-sensitive mitochondrial conductance.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Metabolismo Energético/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Neuronas/ultraestructura , Propranolol/farmacología , Adenosina Trifosfato/metabolismo , Análisis de Varianza , Animales , Fenómenos Biofísicos/efectos de los fármacos , Encéfalo/citología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ciclosporina/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Humanos , Masculino , Ratones , Membranas Mitocondriales/efectos de los fármacos , Neuroblastoma/patología , Neuroblastoma/ultraestructura , Oligopéptidos/farmacología , Consumo de Oxígeno/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley
3.
Exp Neurol ; 218(2): 213-20, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19427306

RESUMEN

Recent discoveries show that caspase-independent cell death pathways are a pervasive mechanism in neurodegenerative diseases, and apoptosis-inducing factor (AIF) is an important effector of this mode of neuronal death. There are currently two known mechanisms underlying AIF release following excitotoxic stress, PARP-1 and calpain. To test whether there is an interaction between PARP-1 and calpain in triggering AIF release, we used the NMDA toxicity model in rat primary cortical neurons. Exposure to NMDA resulted in AIF truncation and nuclear translocation, and shRNA-mediated knockdown of AIF resulted in neuroprotection. Both calpain and PARP-1 are involved with AIF processing as AIF truncation, nuclear translocation and neuronal death were attenuated by calpain inhibition using adeno-associated virus-mediated overexpression of the endogenous calpain inhibitor, calpastatin, or treatment with the PARP-1 inhibitor 3-ABA. Activation of PARP-1 is necessary for calpain activation as PARP-1 inhibition blocked mitochondrial calpain activation. Finally, NMDA toxicity induces mitochondrial Ca(2+) dysregulation in a PARP-1 dependent manner. Thus, PARP-1 and mitochondrial calpain activation are linked via PARP-1-induced alterations in mitochondrial Ca(2+) homeostasis. Collectively, these findings link the two seemingly independent mechanisms triggering AIF-induced neuronal death.


Asunto(s)
Factor Inductor de la Apoptosis/biosíntesis , Calcio/metabolismo , Calpaína/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Transducción de Señal/efectos de los fármacos , Análisis de Varianza , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Células Cultivadas , Corteza Cerebral/citología , ADN Complementario , Agonistas de Aminoácidos Excitadores/farmacología , Vectores Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Mitocondrias/efectos de los fármacos , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1 , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley , Transfección
4.
Stroke ; 39(11): 3057-63, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18723421

RESUMEN

BACKGROUND AND PURPOSE: Mitochondrial biogenesis is regulated through the coordinated actions of both nuclear and mitochondrial genomes to ensure that the organelles are replenished on a regular basis. This highly regulated process has been well defined in skeletal and heart muscle, but its role in neuronal cells, particularly when under stress or injury, is not well understood. In this study, we report for the first time rapidly increased mitochondrial biogenesis in a rat model of neonatal hypoxic/ischemic brain injury (H-I). METHODS: Postnatal day 7 rats were subjected to H-I induced by unilateral carotid artery ligation followed by 2.5 hours of hypoxia. The relative amount of brain mitochondrial DNA (mtDNA) was measured semiquantitatively using long fragment PCR at various time points after H-I. HSP60 and COXIV proteins were detected by Western blot. Expression of three genes critical for the transcriptional regulation of mitochondrial biogenesis, peroxisome proliferator-activated receptor coactivator-1 (PGC-1), nuclear respiratory factor-1 (NRF-1), and mitochondrial transcription factor A (TFAM), were examined by Western blot and RT-PCR. RESULTS: Brain mtDNA content was markedly increased 6 hours after H-I, and continued to increase up to 24 hours after H-I. Paralleling the temporal change in mtDNA content, mitochondrial number and proteins HSP60 and COXIV, and citrate synthase activity were increased in neurons in the cortical infarct border zone after H-I. Moreover, cortical expression of NRF-1 and TFAM were increased 6 to 24 hours after H-I, whereas PGC-1 was not changed. CONCLUSIONS: Neonatal H-I brain injury rapidly induces mitochondrial biogenesis, which may constitute a novel component of the endogenous repair mechanisms of the brain.


Asunto(s)
Lesiones Encefálicas , Hipoxia-Isquemia Encefálica , Mitocondrias/metabolismo , Neuronas , Animales , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Chaperonina 60/genética , Chaperonina 60/metabolismo , Citrato (si)-Sintasa/genética , Citrato (si)-Sintasa/metabolismo , ADN Mitocondrial/análisis , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Etiquetado Corte-Fin in Situ , Mitocondrias/genética , Mitocondrias/ultraestructura , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Neuronas/metabolismo , Neuronas/ultraestructura , Ratas , Ratas Sprague-Dawley
5.
Stroke ; 39(9): 2587-95, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18617666

RESUMEN

BACKGROUND AND PURPOSE: NAD(+) is an essential cofactor for cellular energy production and participates in various signaling pathways that have an impact on cell survival. After cerebral ischemia, oxidative DNA lesions accumulate in neurons because of increased attacks by ROS and diminished DNA repair activity, leading to PARP-1 activation, NAD(+) depletion, and cell death. The objective of this study was to determine the neuroprotective effects of NAD(+) repletion against ischemic injury and the underlying mechanism. METHODS: In vitro ischemic injury was induced in rat primary neuronal cultures by oxygen-glucose deprivation (OGD) for 1 to 2 hours. NAD(+) was replenished by adding NAD(+) directly to the culture medium before or after OGD. Cell viability, oxidative DNA damage, and DNA base-excision repair (BER) activity were measured quantitatively up to 72 hours after OGD with or without NAD(+) repletion. Knockdown of BER enzymes was achieved in cultures using AAV-mediated transfection of shRNA. RESULTS: Direct NAD(+) repletion in neurons either before or after OGD markedly reduced cell death and OGD-induced accumulation of DNA damage (AP sites, single and double strand breaks) in a concentration- and time-dependent manner. NAD(+) repletion restored nDNA repair activity by inhibiting serine-specific phosphorylation of the essential BER enzymes AP endonuclease and DNA polymerase-beta. Knocking down AP endonuclease expression significantly reduced the prosurvival effect of NAD(+) repletion. CONCLUSIONS: Cellular NAD(+) replenishment is a novel and potent approach to reduce ischemic injury in neuronal cultures. Restoration of DNA repair activity via the BER pathway is a key signaling event mediating the neuroprotective effect of NAD(+) replenishment.


Asunto(s)
Isquemia Encefálica/metabolismo , Citoprotección , Reparación del ADN , NAD/metabolismo , Degeneración Nerviosa/metabolismo , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/fisiopatología , Muerte Celular , Supervivencia Celular/genética , Células Cultivadas , Citoprotección/efectos de los fármacos , ADN Polimerasa beta/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Relación Dosis-Respuesta a Droga , NAD/farmacología , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/fisiopatología , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos
6.
J Neurochem ; 106(5): 1977-90, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18466320

RESUMEN

Leptin is well known as a hormone important in the central control of appetitive behaviors via receptor-mediated actions in the hypothalamus, where leptin adjusts food intake to maintain homeostasis with the body's energy stores. Recent evidence has shown that leptin and its receptors are widespread in the CNS and may provide neuronal survival signals. This review summarizes our current knowledge of how leptin functions in the brain and then focuses on the ability of leptin to mitigate neuronal damage in experimental models of human neurological disorders. Damage to the brain by acute events such as stroke, or long-term loss of neurons associated with neurodegenerative diseases, including Parkinson's and Alzheimer's disease, may be amenable to treatment using leptin to limit death of susceptible cells. Leptin-mediated pro-survival signaling is now known to prevent the death of neurons in these models. The signaling cascades that leptin generates are shared by other neuroprotective molecules including insulin and erythropoietin, and are thus a component of the neurotrophic effects mediated by endogenous hormones. Coupled with evidence that leptin dysregulation in human disease also results in enhanced neuronal susceptibility to damage, development of leptin as a therapeutic methodology is an attractive and viable possibility.


Asunto(s)
Encefalopatías/metabolismo , Sistema Nervioso Central/metabolismo , Leptina/metabolismo , Degeneración Nerviosa/metabolismo , Fármacos Neuroprotectores/metabolismo , Animales , Encefalopatías/tratamiento farmacológico , Encefalopatías/fisiopatología , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/fisiopatología , Eritropoyetina/metabolismo , Humanos , Insulina/metabolismo , Leptina/farmacología , Leptina/uso terapéutico , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/fisiopatología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
7.
J Biol Chem ; 282(47): 34479-91, 2007 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-17895242

RESUMEN

The death of midbrain dopaminergic neurons in sporadic Parkinson disease is of unknown etiology but may involve altered growth factor signaling. The present study showed that leptin, a centrally acting hormone secreted by adipocytes, rescued dopaminergic neurons, reversed behavioral asymmetry, and restored striatal catecholamine levels in the unilateral 6-hydroxydopamine (6-OHDA) mouse model of dopaminergic cell death. In vitro studies using the murine dopaminergic cell line MN9D showed that leptin attenuated 6-OHDA-induced apoptotic markers, including caspase-9 and caspase-3 activation, internucleosomal DNA fragmentation, and cytochrome c release. ERK1/2 phosphorylation (pERK1/2) was found to be critical for mediating leptin-induced neuroprotection, because inhibition of the MEK pathway blocked both the pERK1/2 response and the pro-survival effect of leptin in cultures. Knockdown of the downstream messengers JAK2 or GRB2 precluded leptin-induced pERK1/2 activation and neuroprotection. Leptin/pERK1/2 signaling involved phosphorylation and nuclear localization of CREB (pCREB), a well known survival factor for dopaminergic neurons. Leptin induced a marked MEK-dependent increase in pCREB that was essential for neuroprotection following 6-OHDA toxicity. Transfection of a dominant negative MEK protein abolished leptin-enhanced pCREB formation, whereas a dominant negative CREB or decoy oligonucleotide diminished both pCREB binding to its target DNA sequence and MN9D survival against 6-OHDA toxicity. Moreover, in the substantia nigra of mice, leptin treatment increased the levels of pERK1/2, pCREB, and the downstream gene product BDNF, which were reversed by the MEK inhibitor PD98059. Collectively, these data provide evidence that leptin prevents the degeneration of dopaminergic neurons by 6-OHDA and may prove useful in the treatment of Parkinson disease.


Asunto(s)
Apoptosis/efectos de los fármacos , Leptina/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Oxidopamina/toxicidad , Enfermedad de Parkinson/metabolismo , Simpaticolíticos/toxicidad , Adipocitos/metabolismo , Adipocitos/patología , Animales , Proteína de Unión a CREB/metabolismo , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Catecolaminas/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Flavonoides/farmacología , Proteína Adaptadora GRB2 , Humanos , Janus Quinasa 2/metabolismo , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neuronas/patología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Fosforilación/efectos de los fármacos , Sustancia Negra/metabolismo , Sustancia Negra/patología
8.
Stroke ; 38(8): 2329-36, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17600230

RESUMEN

BACKGROUND AND PURPOSE: Leptin is the major adipose hormone that regulates body weight and energy expenditure by activating leptin receptors in the hypothalamus. Leptin receptors are also present in other cell types, and a potent antiapoptotic effect for leptin has recently been reported. We investigated whether leptin was neuroprotective against ischemic brain injury. METHODS: In vitro ischemic injury was induced in rat primary neuronal culture by oxygen-glucose deprivation for 90 minutes. In vivo ischemic brain injury was induced by middle cerebral artery occlusion in mice for 60 minutes. RESULTS: Leptin receptors were detected in cultured rat cortical neurons, as well as in the mouse cortex, striatum, and hippocampus. In vitro results showed that leptin, 50 to 100 mug/mL, protected primary cortical neurons against death induced by oxygen-glucose deprivation in a concentration-dependent manner. In vivo studies in the mouse brain demonstrated that the intraperitoneal administration of leptin, 2 to 8 mg/kg, dose-dependently reduced infarct volume induced by middle cerebral artery occlusion. Leptin was effective when injected 5 minutes before or 30 to 90 minutes after reperfusion, but not 2 hours after reperfusion. Leptin improved animal body weight recovery and behavioral parameters after cerebral ischemia. Leptin enhanced the phosphorylation of extracellular signal-related kinase 1/2. Both extracellular signal-related kinase 1/2 activation and neuroprotection were abolished by the administration of PD98059 in vitro and in vivo. CONCLUSIONS: Leptin is neuroprotective against ischemic neuronal injury. Our findings suggest that leptin is a legitimate candidate for the treatment of ischemic stroke.


Asunto(s)
Infarto Encefálico/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Ataque Isquémico Transitorio/tratamiento farmacológico , Leptina/farmacología , Fármacos Neuroprotectores/farmacología , Daño por Reperfusión/prevención & control , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Encéfalo/irrigación sanguínea , Encéfalo/fisiopatología , Infarto Encefálico/fisiopatología , Infarto Encefálico/prevención & control , Células Cultivadas , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glucosa/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/fisiopatología , Ataque Isquémico Transitorio/metabolismo , Ataque Isquémico Transitorio/fisiopatología , Leptina/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/uso terapéutico , Fosforilación/efectos de los fármacos , Ratas , Receptores de Superficie Celular/agonistas , Receptores de Superficie Celular/metabolismo , Receptores de Leptina , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/fisiopatología , Resultado del Tratamiento
9.
Stroke ; 38(3): 1017-24, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17272774

RESUMEN

BACKGROUND AND PURPOSE: Hypoxic preconditioning (PC) confers robust neuroprotection against neonatal hypoxic-ischemic brain injury (H-I), yet the underlying mechanism is poorly understood. In the adult brain, neuronal survival after ischemia is associated with the activation of the phosphatidylinositol 3-kinase (PI3-K)/Akt signaling pathway. Suppression of inflammation is a newly identified direct consequence of PI3-K/Akt signaling. We therefore investigated whether PI3-K/Akt suppresses inflammation and contributes to PC-induced neuroprotection. METHODS: Postnatal day 7 rats were exposed for 3 hours to either ambient air or 8% oxygen, which induces hypoxic PC. H-I was produced 24 hours later by unilateral carotid artery ligation followed by 2.5 hours of hypoxia. Animals were euthanized 0 to 24 hours later for detecting Akt and glycogen synthetase kinase-3beta phosphorylation (p-Akt, p-GSK-3beta), 24 hours later for assessing cytokine expression and inflammatory markers, and 7 days later for measuring brain tissue loss. In addition, LY294002 was injected intracerebroventricularly to inhibit PI3-K/Akt. RESULTS: Brains with H-I without PC showed delayed but sustained reduction in p-Akt. PC restored the levels of p-Akt and the Akt substrate GSK-3beta, reduced proinflammatory markers (NF-kappaB, COX-2, CD68, myeloperoxidase, and microglial activation), and markedly ameliorated H-I-induced brain tissue loss. Inhibition of PI3-K/Akt using LY294002 attenuated PC neuroprotection and promoted the expression of NF-kappaB, COX-2, and CD68. Proteomic microarray analysis revealed that PC inhibited expression of proinflammatory cytokines induced by H-I or a dose of lipopolysaccharide that resulted in minimal tissue damage. CONCLUSIONS: Suppression of inflammatory responses may contribute to PC neuroprotection against neonatal H-I brain injury. This effect is mediated in part via upregulating PI3-K/Akt activity.


Asunto(s)
Hipoxia-Isquemia Encefálica/patología , Hipoxia-Isquemia Encefálica/prevención & control , Precondicionamiento Isquémico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Animales Recién Nacidos , Activación Enzimática/fisiología , Hipoxia-Isquemia Encefálica/enzimología , Inflamación/enzimología , Inflamación/prevención & control , Precondicionamiento Isquémico/métodos , Fosfatidilinositol 3-Quinasas/biosíntesis , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt/biosíntesis , Proteínas Proto-Oncogénicas c-akt/fisiología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología
10.
Neurobiol Dis ; 24(2): 345-56, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16996745

RESUMEN

To determine whether Bcl-2 could influence adult neurogenesis and prevent apoptosis of newborn neurons, we injected Bcl-2 expressing plasmid into the lateral ventricle of rat brain immediately following a 30-min occlusion of the middle cerebral artery (MCAO). We found that Bcl-2 increased neural progenitor cells (BrdU+-DCX+) in the ipsilateral striatum, newborn immature neurons (BrdU+-Tuj-1+) and newborn mature neurons (BrdU+-MAP-2+) in the ipsilateral striatum and frontal cortex at 1 to 4 weeks following MCAO. Bcl-2 overexpression promoted development of newborn neurons into GABAergic and cholinergic neurons in the ipsilateral striatum. Moreover, Bcl-2 significantly decreased the apoptosis of newborn neurons, determined by double staining of Tuj-1 and activated caspase-3 (Tuj-1+-Casp+). These results indicate that overexpression of Bcl-2 in adult rat brain enhances neurogenesis and survival of newborn neurons. Increasing neurogenesis and preventing the death of newborn neuron may be a strategy to aid in the repair of adult brain after stroke.


Asunto(s)
Apoptosis/genética , Infarto de la Arteria Cerebral Media/metabolismo , Degeneración Nerviosa/metabolismo , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Células Madre/metabolismo , Animales , Caspasa 3/metabolismo , Diferenciación Celular/genética , Proliferación Celular , Citoprotección/genética , Modelos Animales de Enfermedad , Proteína Doblecortina , Vectores Genéticos/genética , Infarto de la Arteria Cerebral Media/fisiopatología , Infarto de la Arteria Cerebral Media/terapia , Interneuronas/citología , Interneuronas/metabolismo , Masculino , Degeneración Nerviosa/fisiopatología , Degeneración Nerviosa/prevención & control , Neuronas/citología , Prosencéfalo/citología , Prosencéfalo/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Ratas , Ratas Sprague-Dawley , Células Madre/citología , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/terapia , Transfección , Resultado del Tratamiento , Tubulina (Proteína)/metabolismo , Regulación hacia Arriba/genética
11.
J Neurochem ; 97(2): 435-48, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16539667

RESUMEN

Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a nuclear membrane-associated transcription factor that governs the expression of various inflammatory genes. PPAR-gamma agonists protect peripheral organs from ischemic injury. In the present study, we investigated whether the PPAR-gamma agonist rosiglitazone is neuroprotective against focal ischemic brain injury. C57/B6 mice underwent 1.5-h middle cerebral artery occlusion, and received either vehicle or rosiglitazone treatment of 0.75, 1.5, 3, 6 or 12 mg/kg (n = 9 per group). Cerebral infarct volume, neurological function, expression of pro-inflammatory proteins and neutrophil accumulation were assessed after ischemia and reperfusion. At 48 h after ischemia, infarct volume was significantly decreased with 3-12 mg/kg of rosiglitazone, with a time window of efficacy of 2 h after ischemia at the optimal dose (6 mg/kg). Neutrophil accumulation was significantly decreased in the brain parenchyma of rosiglitazone-treated mice. Ischemia-induced expression of several inflammatory cytokines and chemokines was markedly reduced in rosiglitazone-treated brains, as determined using proteomic-array analysis. Rosiglitazone treatment improved neurological function at 7 days after ischemia. Moreover, in cultured cortical primary microglia, rosiglitazone attenuated inflammatory responses by decreasing lipopolysaccharide-induced release of tumor necrosis factor-alpha, interleukin (IL)-1beta and IL-6. These results suggest that the PPAR-gamma agonist rosiglitazone has neuroprotective properties that are at least partially mediated via anti-inflammatory actions, and is thus a potential novel therapeutic agent for stroke.


Asunto(s)
Isquemia Encefálica/prevención & control , Fármacos Neuroprotectores/uso terapéutico , Tiazolidinedionas/uso terapéutico , Anilidas/farmacología , Animales , Animales Recién Nacidos , Conducta Animal , Presión Sanguínea/efectos de los fármacos , Temperatura Corporal/efectos de los fármacos , Isquemia Encefálica/etiología , Células Cultivadas , Infarto Cerebral/etiología , Infarto Cerebral/prevención & control , Citocinas/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos/metabolismo , Inmunohistoquímica/métodos , Infarto de la Arteria Cerebral Media/complicaciones , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-3/metabolismo , Lectinas/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , PPAR gamma/metabolismo , Peroxidasa/metabolismo , Desempeño Psicomotor/efectos de los fármacos , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes , Reperfusión , Rosiglitazona
12.
J Neurosci Res ; 83(7): 1241-51, 2006 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-16511866

RESUMEN

Erythropoietin (EPO) is a hormone that is neuroprotective in models of neurodegenerative diseases. This study examined whether EPO can protect against neuronal death in the CA1 region of the rat hippocampus following global cerebral ischemia. Recombinant human EPO was infused into the intracerebral ventricle either before or after the induction of ischemia produced by using the four-vessel-occlusion model in rat. Hippocampal CA1 neuron damage was ameliorated by infusion of 50 U EPO. Administration of EPO was neuroprotective if given 20 hr before or 20 min after ischemia, but not 1 hr following ischemia. Coinjection of the phosphoinositide 3 kinase inhibitor LY294002 with EPO inhibited the protective effects of EPO. Treatment with EPO induced phosphorylation of both AKT and its substrate, glycogen synthase kinase-3beta, in the CA1 region. EPO also enhanced the CA1 level of brain-derived neurotrophic factor. Finally, we determined that ERK activation played minor roles in EPO-mediated neuroprotection. These studies demonstrate that a single injection of EPO ICV up to 20 min after global ischemia is an effective neuroprotective agent and suggest that EPO is a viable candidate for treating global ischemic brain injury.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Infarto Cerebral/tratamiento farmacológico , Eritropoyetina/farmacología , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatología , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Infarto Cerebral/fisiopatología , Infarto Cerebral/prevención & control , Modelos Animales de Enfermedad , Esquema de Medicación , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Hipocampo/metabolismo , Hipocampo/fisiopatología , Inyecciones Intraventriculares , Masculino , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Factores de Tiempo
13.
J Cereb Blood Flow Metab ; 26(2): 181-98, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16001017

RESUMEN

The development of ischemic tolerance in the brain, whereby a brief period of sublethal 'preconditioning' ischemia attenuates injury from subsequent severe ischemia, may involve the activation of multiple intracellular signaling events that promote neuronal survival. In this study, the potential role of inducible DNA base-excision repair (BER), an endogenous adaptive response that prevents the detrimental effect of oxidative DNA damage, has been studied in the rat model of ischemic tolerance produced by three episodes of ischemic preconditioning (IP). This paradigm of IP, when applied 2 and 5 days before 2-h middle cerebral artery occlusion (MCAO), significantly decreased infarct volume in the frontal-parietal cortex 72 h later. Correlated with this protective effect, IP markedly attenuated the nuclear accumulations of several oxidative DNA lesions, including 8-oxodG, AP sites, and DNA strand breaks, after 2-h MCAO. Consequently, harmful DNA damage-responsive events, including NAD depletion and p53 activation, were reduced during postischemic reperfusion in preconditioned brains. The mechanism underlying the decreased DNA damage in preconditioned brain was then investigated by measuring BER activities in nuclear extracts. Beta-polymerase-mediated BER activity was markedly increased after IP, and this activation occurred before (24 h) and during the course of ischemic tolerance (48 to 72 h). In similar patterns, the activities for AP site and 8-oxodG incisions were also upregulated after IP. The upregulation of BER activities after IP was likely because of increased expression of repair enzymes beta-polymerase, AP endonuclease, and OGG1. These results suggest that the activation of the BER pathway may contribute to IP-induced neuroprotection by enhancing the repair of endogenous oxidative DNA damage after ischemic injury.


Asunto(s)
Isquemia Encefálica/metabolismo , Encéfalo/irrigación sanguínea , Daño del ADN , Reparación del ADN , ADN/metabolismo , Precondicionamiento Isquémico , Animales , Encéfalo/metabolismo , Encéfalo/patología , Isquemia Encefálica/patología , ADN Glicosilasas/genética , ADN Polimerasa beta/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Modelos Animales de Enfermedad , Regulación Enzimológica de la Expresión Génica , Infarto de la Arteria Cerebral Media/fisiopatología , Masculino , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Regulación hacia Arriba
14.
J Neurochem ; 96(2): 428-43, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16336625

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the death of midbrain dopaminergic neurons. In the present study, erythropoietin, a trophic factor that has both hematopoietic and neural protective characteristics, was investigated for its capacity to protect dopaminergic neurons in experimental Parkinson's disease. Using both the dopaminergic cell line, MN9D, and primary dopamine neurons, we show that erythropoietin (1-3 U/mL) is neuroprotective against the dopaminergic neurotoxin, 6-hydroxydopamine. Protection was mediated by the erythropoietin receptor, as neutralizing anti-erythropoietin receptor antibody abrogated the protection. Activation of Akt/protein kinase B (PKB), via the phosphoinositide 3-kinase pathway, is a critical mechanism in erythropoietin-induced protection, while activation of extracellular signal-regulated kinase (ERK)1/2 contributes only moderately. Indeed, transfection of constitutively active Akt/PKB into dopaminergic cells was sufficient to protect against cell death. Furthermore, erythropoietin diminished markers of apoptosis in MN9D cells, including caspase 9 and caspase 3 activation and internucleosomal DNA fragmentation, suggesting that erythropoietin interferes with the apoptosis-execution process. When erythropoietin was administered to mice unilaterally lesioned with 6-hydroxydopamine, it prevented the loss of nigral dopaminergic neurons and maintained striatal catecholamine levels for at least 8 weeks. Erythropoietin-treated mice also had significantly reduced behavioral asymmetries. These studies suggest that erythropoietin can be an effective neuroprotective agent for dopaminergic neurons, and may be useful in reversing behavioral deficits associated with Parkinson's disease.


Asunto(s)
Dopamina/metabolismo , Eritropoyetina/farmacología , Neuronas/fisiología , Fármacos Neuroprotectores/farmacología , Neurotoxinas/farmacología , Oxidopamina/farmacología , Animales , Apoptosis/fisiología , Conducta Animal/efectos de los fármacos , Biomarcadores/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
15.
Neurobiol Dis ; 21(2): 358-71, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16140540

RESUMEN

Systemic delivery of recombinant Bcl-xL fusion protein containing the TAT protein transduction domain attenuated neonatal brain damage following hypoxic ischemia (H-I). Within 30 min after intraperitoneal injection of TAT-Bcl-xL protein into 7-day-old rats, substantially enhanced levels of Bcl-xL were found in several brain regions. Administration of TAT-Bcl-xL at the conclusion of the H-I insult decreased cerebral tissue loss in a dose-dependent manner measured 1 and 8 weeks later. Neuroprotection provided by TAT-Bcl-xL was significantly greater than that of the pan-caspase inhibitor BAF, suggesting that protection is only partially attributable to caspase inhibition by TAT-Bcl-xL. TAT-Bcl-xL not only inhibited caspases-3 and -9 activities after H-I but also prevented nuclear translocation of AIF. Taken together, these results substantiate the feasibility of peripheral delivery of an anti-apoptotic factor into the brain of neonatal animals to reduce H-I-induced brain injury.


Asunto(s)
Factor Inductor de la Apoptosis/efectos de los fármacos , Caspasas/efectos de los fármacos , Productos del Gen tat/genética , Hipoxia-Isquemia Encefálica/prevención & control , Fármacos Neuroprotectores/administración & dosificación , Proteína bcl-X/administración & dosificación , Animales , Animales Recién Nacidos , Western Blotting , Activación Enzimática/efectos de los fármacos , Inmunohistoquímica , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratas , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/genética , Proteína bcl-X/genética
16.
J Cereb Blood Flow Metab ; 25(6): 694-712, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15716857

RESUMEN

c-Jun N-terminal kinase (JNK) is an important stress-responsive kinase that is activated by various forms of brain insults. In this study, we have examined the role of JNK activation in neuronal cell death in a murine model of focal ischemia and reperfusion; furthermore, we investigated the mechanism of JNK in apoptosis signaling, focusing on the mitochondrial-signaling pathway. We show here that JNK activity was induced in the brain 0.5 to 24 h after ischemia. Systemic administration of SP600125, a small molecule JNK-specific inhibitor, diminished JNK activity after ischemia and dose-dependently reduced infarct volume. c-Jun N-terminal kinase inhibition also attenuated ischemia-induced expression of Bim, Hrk/DP5, and Fas, but not the expression of Bcl-2 or FasL. In strong support of a role for JNK in promoting the mitochondrial apoptosis-signaling pathway, JNK inhibition prevented ischemia-induced mitochondrial translocation of Bax and Bim, release of cytochrome c and Smac, and activation of caspase-9 and caspase-3. The potential mechanism by which JNK promoted Bax translocation after ischemia was further studied using coimmunoprecipitation, and the results revealed that JNK activation caused serine phosphorylation of 14-3-3, a cytoplasmic sequestration protein of Bax, leading to Bax disassociation from 14-3-3 and subsequent translocation to mitochondria. These results confirm the role of JNK as a critical cell death mediator in ischemic brain injury, and suggest that one of the mechanisms by which JNK triggers the mitochondrial apoptosis-signaling pathway is via promoting Bax and Bim translocation.


Asunto(s)
Antracenos/farmacología , Apoptosis/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas 14-3-3/metabolismo , Animales , Apoptosis/fisiología , Proteínas Reguladoras de la Apoptosis , Proteína 11 Similar a Bcl2 , Isquemia Encefálica/patología , Proteínas Portadoras/metabolismo , Infarto Cerebral/tratamiento farmacológico , Infarto Cerebral/metabolismo , Infarto Cerebral/patología , Inhibidores Enzimáticos/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fármacos Neuroprotectores/farmacología , Fosforilación , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Proteína X Asociada a bcl-2
17.
J Neurochem ; 89(3): 776-87, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15086533

RESUMEN

6-Hydroxydopamine (6-OHDA)-induced loss of dopamine (DA) neurons has served to produce an animal model of DA neuron loss in Parkinson's disease. We report here the use of 6-OHDA to produce an in vitro model of this phenomena using dissociated cultures prepared from neonatal rat mesencephalon. Cultures were exposed to 6-OHDA (40-100 microm, 15 min) in an antioxidant medium, and DA and GABA neurons evaluated by immunocytochemistry. 6-OHDA induced morphological and biochemical signs of cell death in DA neurons within 3 h, followed by loss of tyrosine hydroxylase immunoreactive neurons within 2 days. In substantia nigra (SN) cultures, DA neurons were much more affected by 6-OHDA than were GABA neurons. In contrast, DA neurons from the ventral tegmental area were only lost at higher, non-specific concentrations of 6-OHDA. The effects of 6-OHDA on nigral DA neurons were blocked by inhibitors of high affinity DA transport and by z-DEVD-fmk (150 microm), a caspase inhibitor. Glial cell line-derived neurotrophic factor (GDNF) treatment reduced TUNEL labeling 3 h after 6-OHDA exposure, but did not prevent loss of DA neurons at 48 h. Thus, 6-OHDA can selectively destroy DA neurons in post-natal cultures of SN, acting at least in part by initiating caspase-dependent apoptosis, and this effect can be attenuated early but not late by GDNF.


Asunto(s)
Glicoproteínas de Membrana , Factores de Crecimiento Nervioso/farmacología , Proteínas del Tejido Nervioso , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Oxidopamina/toxicidad , Sustancia Negra/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Inhibidores de Captación de Dopamina/farmacología , Inhibidores Enzimáticos/farmacología , Factor Neurotrófico Derivado de la Línea Celular Glial , Moduladores del Transporte de Membrana , Proteínas de Transporte de Membrana/antagonistas & inhibidores , Modelos Biológicos , Neuronas/citología , Ratas , Ratas Sprague-Dawley , Sustancia Negra/citología , Área Tegmental Ventral/citología , Área Tegmental Ventral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...