Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(5): e2306816121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38266047

RESUMEN

Astrocyte activation is associated with neuropathology and the production of tissue inhibitor of metalloproteinase-1 (TIMP1). TIMP1 is a pleiotropic extracellular protein that functions both as a protease inhibitor and as a growth factor. Astrocytes that lack expression of Timp1 do not support rat oligodendrocyte progenitor cell (rOPC) differentiation, and adult global Timp1 knockout (Timp1KO) mice do not efficiently remyelinate following a demyelinating injury. Here, we performed an unbiased proteomic analysis and identified a fibronectin-derived peptide called Anastellin (Ana) that was unique to the Timp1KO astrocyte secretome. Ana was found to block rOPC differentiation in vitro and enhanced the inhibitory influence of fibronectin on rOPC differentiation. Ana is known to act upon the sphingosine-1-phosphate receptor 1, and we determined that Ana also blocked the pro-myelinating effect of FTY720 (or fingolimod) on rOPC differentiation in vitro. Administration of FTY720 to wild-type C57BL/6 mice during MOG35-55-experimental autoimmune encephalomyelitis ameliorated clinical disability while FTY720 administered to mice lacking expression of Timp1 (Timp1KO) had no effect. Analysis of Timp1 and fibronectin (FN1) transcripts from primary human astrocytes from healthy and multiple sclerosis (MS) donors revealed lower TIMP1 expression was coincident with elevated FN1 in MS astrocytes. Last, analyses of proteomic databases of MS samples identified Ana peptides to be more abundant in the cerebrospinal fluid (CSF) of human MS patients with high disease activity. A role for Ana in MS as a consequence of a lack of astrocytic TIMP-1 production could influence both the efficacy of fingolimod responses and innate remyelination potential in the MS brain.


Asunto(s)
Esclerosis Múltiple , Fragmentos de Péptidos , Inhibidor Tisular de Metaloproteinasa-1 , Animales , Ratones , Ratas , Astrocitos , Fibronectinas/genética , Clorhidrato de Fingolimod/farmacología , Ratones Endogámicos C57BL , Esclerosis Múltiple/tratamiento farmacológico , Proteómica , Inhibidor Tisular de Metaloproteinasa-1/genética
2.
bioRxiv ; 2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36824834

RESUMEN

Astrocyte activation is associated with neuropathology and the production of tissue inhibitor of metalloproteinase-1 (TIMP1). TIMP1 is a pleiotropic extracellular protein that functions both as a protease inhibitor and as a growth factor. We have previously demonstrated that murine astrocytes that lack expression of Timp1 do not support rat oligodendrocyte progenitor cell (rOPC) differentiation, and adult global Timp1 knockout ( Timp1 KO ) mice do not efficiently remyelinate following a demyelinating injury. To better understand the basis of this, we performed unbiased proteomic analyses and identified a fibronectin-derived peptide called anastellin that is unique to the murine Timp1 KO astrocyte secretome. Anastellin was found to block rOPC differentiation in vitro and enhanced the inhibitory influence of fibronectin on rOPC differentiation. Anastellin is known to act upon the sphingosine-1-phosphate receptor 1 (S1PR1), and we determined that anastellin also blocked the pro-myelinating effect of FTY720 (or fingolimod) on rOPC differentiation in vitro . Further, administration of FTY720 to wild-type C57BL/6 mice during MOG 35-55 -EAE ameliorated clinical disability while FTY720 administered to mice lacking expression of Timp1 in astrocytes ( Timp1 cKO ) had no effect. Analysis of human TIMP1 and fibronectin ( FN1 ) transcripts from healthy and multiple sclerosis (MS) patient brain samples revealed an inverse relationship where lower TIMP1 expression was coincident with elevated FN1 in MS astrocytes. Lastly, we analyzed proteomic databases of MS samples and identified anastellin peptides to be more abundant in the cerebrospinal fluid (CSF) of human MS patients with high versus low disease activity. The prospective role for anastellin generation in association with myelin lesions as a consequence of a lack of astrocytic TIMP-1 production could influence both the efficacy of fingolimod responses and the innate remyelination potential of the the MS brain. Significance Statement: Astrocytic production of TIMP-1 prevents the protein catabolism of fibronectin. In the absence of TIMP-1, fibronectin is further digested leading to a higher abundance of anastellin peptides that can bind to sphingosine-1-phosphate receptor 1. The binding of anastellin with the sphingosine-1-phosphate receptor 1 impairs the differentiation of oligodendrocytes progenitor cells into myelinating oligodendrocytes in vitro , and negates the astrocyte-mediated therapeutic effects of FTY720 in the EAE model of chronic CNS inflammation. These data indicate that TIMP-1 production by astrocytes is important in coordinating astrocytic functions during inflammation. In the absence of astrocyte produced TIMP-1, elevated expression of anastellin may represent a prospective biomarker for FTY720 therapeutic responsiveness.

3.
Sci Rep ; 10(1): 532, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31953424

RESUMEN

Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system which eventually results in axonal loss mainly due to failure of remyelination. Previously we have shown that the persistent presence of stable astrocyte-derived fibronectin aggregates in MS lesions impairs OPC differentiation, and thereby remyelination. Here we set out to discern whether and, if so, how inflammatory mediators as present in MS lesions trigger astrocytes to form fibronectin aggregates. Our findings revealed that in slice cultures only upon demyelination, the TLR3 agonist Poly(I:C) evoked astrocytes to form fibronectin aggregates. Consistently, pro-inflammatory cytokine-pretreated astrocytes were more susceptible to Poly(I:C)-induced fibronectin aggregation, indicating that astrocytes form fibronectin aggregates upon a double hit by inflammatory mediators. The underlying mechanism involves disrupted fibronectin fibrillogenesis at the cell surface as a result of a cytokine-induced increase in relative mRNA levels of EIIIApos-Fn over EIIIBpos-Fn and a Poly(I:C)-mediated decrease in integrin affinity. Remarkably, fibronectin aggregation is exacerbated by white matter astrocytes compared to grey matter astrocytes, which may be a reflection of higher expression levels of EIIIApos-fibronectin in white matter astrocytes. Hence, interfering with alternative fibronectin splicing and/or TLR3-mediated signaling may prevent fibronectin aggregation and overcome remyelination failure in MS lesions.


Asunto(s)
Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Fibronectinas/química , Agregado de Proteínas/efectos de los fármacos , Receptor Toll-Like 3/agonistas , Animales , Adhesión Celular/efectos de los fármacos , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Sustancia Gris/citología , Humanos , Poli I-C/farmacología , Isoformas de Proteínas/química , Ratas , Sustancia Blanca/citología
4.
J Neuroinflammation ; 15(1): 218, 2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-30071854

RESUMEN

BACKGROUND: Means to promote endogenous remyelination in multiple sclerosis (MS) benefit from insights into the role of inhibitory molecules that preclude remyelination. Fibronectin assembles into aggregates in MS, which impair oligodendrocyte differentiation and remyelination. Microglia and macrophages are required for complete remyelination and normally switch from a pro-inflammatory classical phenotype upon demyelination to a supportive alternative phenotype during remyelination. Here, we investigated the role of fibronectin aggregates in modulating microglia and macrophage behavior and phenotypes. METHODS: Bone marrow-derived macrophages and microglia from newborn rats were exposed to (a) plasma fibronectin coatings; (b) coatings of deoxycholate-insoluble fibronectin aggregates; (c) interferon-γ (IFNγ) treatment, as an inducer of the pro-inflammatory classically activated phenotype; (d) interleukin-4 (IL-4) treatment, to promote the pro-regenerative anti-inflammatory alternatively activated phenotype; or (e) left unstimulated on uncoated plastic. To examine the in vitro effects of the different stimulations on cell behavior and phenotype, proliferation, phagocytosis, morphology, and pro- and anti-inflammatory features were assessed. RESULTS: In line with a classically activated phenotype, exposure of microglia and macrophages to both plasma fibronectin and fibronectin aggregates induced an amoeboid morphology and stimulated phagocytosis by macrophages. Furthermore, as observed upon IFNγ treatment, coatings of aggregated, but not plasma fibronectin, promoted nitric oxide release by microglia and macrophages. Remarkably, fibronectin aggregates induced nitric oxide release in an integrin-independent manner. In addition, fibronectin aggregates, but not plasma fibronectin, increased the expression of arginase-1, similarly as observed upon treatment with IL-4. Proteomic analysis revealed that aggregates of fibronectin act as a scaffold for other proteins, including Hsp70 and thrombospondin-1, which may clarify the induction of both pro-inflammatory and anti-inflammatory features in macrophages cultured on fibronectin aggregate, but not plasma fibronectin coatings. CONCLUSIONS: Macrophages and microglia grown on aggregated fibronectin coatings adopt a distinct phenotype compared to plasma fibronectin coatings, showing pro-inflammatory and anti-inflammatory features. Therefore, the pathological fibronectin aggregates in MS lesions may impair remyelination by promoting and/or retaining several classically activated phenotypic features in microglia and macrophages.


Asunto(s)
Encéfalo/metabolismo , Citocinas/metabolismo , Fibronectinas/metabolismo , Macrófagos/metabolismo , Esclerosis Múltiple/patología , Agregado de Proteínas/fisiología , Aldehído Deshidrogenasa/metabolismo , Animales , Animales Recién Nacidos , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Citocinas/genética , Citocinas/farmacología , Femenino , Humanos , Factor Estimulante de Colonias de Macrófagos/farmacología , Macrófagos/efectos de los fármacos , Masculino , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Fagocitosis/efectos de los fármacos , Ratas , Ratas Wistar
5.
J Neurosci ; 37(41): 9925-9938, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28899916

RESUMEN

Remyelination failure by oligodendrocytes contributes to the functional impairment that characterizes the demyelinating disease multiple sclerosis (MS). Since incomplete remyelination will irreversibly damage axonal connections, treatments effectively promoting remyelination are pivotal in halting disease progression. Our previous findings suggest that fibronectin aggregates, as an environmental factor, contribute to remyelination failure by perturbing oligodendrocyte progenitor cell (OPC) maturation. Here, we aim at elucidating whether exogenously added gangliosides (i.e., cell surface lipids with a potential to modulate signaling pathways) could counteract fibronectin-mediated inhibition of OPC maturation. Exclusive exposure of rat oligodendrocytes to GD1a, but not other gangliosides, overcomes aggregated fibronectin-induced inhibition of myelin membrane formation, in vitro, and OPC differentiation in fibronectin aggregate containing cuprizone-induced demyelinated lesions in male mice. GD1a exerts its effect on OPCs by inducing their proliferation and, at a late stage, by modulating OPC maturation. Kinase activity profiling revealed that GD1a activated a protein kinase A (PKA)-dependent signaling pathway and increased phosphorylation of the transcription factor cAMP response element-binding protein. Consistently, the effect of GD1a in restoring myelin membrane formation in the presence of fibronectin aggregates was abolished by the PKA inhibitor H89, whereas the effect of GD1a was mimicked by the PKA activator dibutyryl-cAMP. Together, GD1a overcomes the inhibiting effect of aggregated fibronectin on OPC maturation by activating a PKA-dependent signaling pathway. Given the persistent presence of fibronectin aggregates in MS lesions, ganglioside GD1a might act as a potential novel therapeutic tool to selectively modulate the detrimental signaling environment that precludes remyelination.SIGNIFICANCE STATEMENT As an environmental factor, aggregates of the extracellular matrix protein fibronectin perturb the maturation of oligodendrocyte progenitor cells (OPCs), thereby impeding remyelination, in the demyelinating disease multiple sclerosis (MS). Here we demonstrate that exogenous addition of ganglioside GD1a overcomes the inhibiting effect of aggregated fibronectin on OPC maturation, both in vitro and in vivo, by activating a PKA-dependent signaling pathway. We propose that targeted delivery of GD1a to MS lesions may act as a potential novel molecular tool to boost maturation of resident OPCs to overcome remyelination failure and halt disease progression.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fibronectinas/antagonistas & inhibidores , Gangliósidos/farmacología , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Vaina de Mielina/efectos de los fármacos , Animales , Axones/efectos de los fármacos , Axones/patología , Células Cultivadas , Cuprizona/toxicidad , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/prevención & control , Activación Enzimática , Fibronectinas/farmacología , Masculino , Ratones , Vaina de Mielina/patología , Células-Madre Neurales/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Oligodendroglía/patología , Ratas , Transducción de Señal/efectos de los fármacos
6.
Neuro Oncol ; 14(9): 1125-35, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22723427

RESUMEN

Eph/ephrin signaling has been implicated in various types of key cancer-enhancing processes, like migration, proliferation, and angiogenesis. In medulloblastoma, invading tumor cells characteristically lead to early recurrence and a decreased prognosis. Based on kinase-activity profiling data published recently, we hypothesized a key role for the Eph/ephrin signaling system in medulloblastoma invasion. In primary medulloblastoma samples, a significantly higher expression of EphB2 and the ligand ephrin-B1 was observed compared with normal cerebellum. Furthermore, medulloblastoma cell lines showed high expression of EphA2, EphB2, and EphB4. Stimulation of medulloblastoma cells with ephrin-B1 resulted in a marked decrease in in vitro cell adhesion and an increase in the invasion capacity of cells expressing high levels of EphB2. The cell lines that showed an ephrin-B1-induced phenotype possessed increased levels of phosphorylated EphB2 and, to a lesser extent, EphB4 after stimulation. Knockdown of EphB2 expression by short hairpin RNA completely abolished ephrin ligand-induced effects on adhesion and migration. Analysis of signal transduction identified p38, Erk, and mTOR as downstream signaling mediators potentially inducing the ephrin-B1 phenotype. In conclusion, the observed deregulation of Eph/ephrin expression in medulloblastoma enhances the invasive phenotype, suggesting a potential role in local tumor cell invasion and the formation of metastases.


Asunto(s)
Adhesión Celular/fisiología , Movimiento Celular/fisiología , Neoplasias Cerebelosas/patología , Meduloblastoma/patología , Receptor EphB2/genética , Receptor EphB2/metabolismo , Apoptosis , Western Blotting , Proliferación Celular , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Niño , Metilación de ADN , Efrina-B1/genética , Efrina-B1/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo , Fosforilación , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor EphB2/antagonistas & inhibidores , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Células Tumorales Cultivadas
7.
Glia ; 60(6): 919-35, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22431161

RESUMEN

Myelination of axons by oligodendrocytes (OLGs) is essential for proper saltatory nerve conduction, i.e., rapid transmission of nerve impulses. Among others, extracellular matrix (ECM) molecules, neuronal signaling, and axonal adhesion regulate the biogenesis and maintenance of myelin membranes, driven by polarized transport of myelin-specific proteins and lipids. Galectin-4, a tandem-repeat-type lectin with affinity to sulfatide and nonsialylated termini of N-glycans, has the ability to regulate adhesion of cells to ECM components and is also involved in polarized membrane trafficking. We, therefore, anticipated that galectin-4 might play a role in myelination. Here, we show that in developing postnatal rat brains galectin-4 expression is downregulated just before the onset of myelination. Intriguingly, when immature OLGs were treated with galectin-4, OLG maturation was retarded, while a subset of the immature OLGs reverted to a morphologically less complex progenitor stage, displaying concomitantly an increase in proliferation. Similarly, myelination was inhibited when galectin-4 or anti-galectin-4 antibodies were added to co-cultures of dorsal root ganglion neurons and OLGs. Neurons and OLGs were identified as a possible source of galectin-4, both in vitro and in vivo. In culture, neurons but not OLGs released galectin-4. Interestingly, in co-cultures, a reduced release of endogenous galectin-4 correlated with the onset of myelination. Moreover, galectin-4-reactive sites are transiently expressed on processes of premyelinating primary OLGs, but not on neurons. Taken together, these results identify neuronal galectin-4 as a candidate for a soluble regulator of OLG differentiation and, hence, myelination. © 2012 Wiley Periodicals, Inc.


Asunto(s)
Galectina 4/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Neuronas/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Anticuerpos/farmacología , Encéfalo/citología , Bromodesoxiuridina/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Galectina 4/genética , Galectina 4/inmunología , Galectina 4/farmacología , Ganglios Espinales/citología , Gangliósidos/metabolismo , Humanos , L-Lactato Deshidrogenasa/metabolismo , Proteína Básica de Mielina/fisiología , Neuronas/fisiología , Oligodendroglía , Ratas , Ratas Wistar , Proteínas Recombinantes/farmacología , Transducción Genética
8.
Crit Rev Oncol Hematol ; 82(2): 171-86, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21641230

RESUMEN

In cancer, genetic and epigenetic alterations ultimately culminate in discordant activation of signal transduction pathways driving the malignant process. Pharmacological or biological inhibition of such pathways holds significant promise with respect to devising rational therapy for cancer. Thus, technical concepts pursuing robust characterization of kinase activity in tissue samples from cancer patients have been subject of investigation. In the present review we provide a comprehensive overview of these techniques and discuss their advantages and disadvantages for systems biology approaches to identify kinase targets in oncological disease. Recent advances in the development and application of array-based peptide-substrate kinase activity screens show great promise in overcoming the discrepancy between the evaluation of aberrant cell signaling in specific malignancies or even individual patients and the currently available ensemble of highly specific targeted treatment strategies. These developments have the potential to result in a more effective selection of kinase inhibitors and thus optimize mechanism-based patient-specific therapeutic strategies. Given the results from current research on the tumor kinome, generating network views on aberrant tumor cell signaling is critical to meet this challenge.


Asunto(s)
Neoplasias/terapia , Biología de Sistemas , Humanos , Neoplasias/enzimología , Fosfoproteínas/metabolismo , Proteínas Quinasas/metabolismo , Proteómica
9.
Leuk Lymphoma ; 52(1): 122-30, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21133721

RESUMEN

To date, the biology of acute leukemia has been unclear, and defining new therapeutic targets without prior knowledge remains complicated. The use of high-throughput techniques would enable us to learn more about the biology of the disease, and make it possible to directly assess a broader range of therapeutic targets. In this study we have identified comprehensive tyrosine kinase activity profiles in leukemia samples using the PamChip® kinase activity profiling system. Strikingly, 31% (44/120) of the detected peptides were active in all three groups of leukemia samples. The recently reported activity of platelet-derived growth factor receptor (PDGFR) and neurotrophic tyrosine kinase receptors (NTRK1 and NTRK2) in leukemia could be appreciated in our array results. In addition, high levels of peptide phosphorylation were demonstrated for peptides related to macrophage stimulating 1 receptor (MST1R). A provisional signal transduction scheme of the common active peptides was constructed and used to specifically select an inhibitor for leukemic blast cell survival assays. As expected, a dose-dependent decrease in leukemic blast cell survival was achieved for all leukemia samples. Our data demonstrate that kinase activity profiling in leukemic samples is feasible and provides novel insights into the pathogenesis of leukemia. This approach can be used for the rapid discovery of potential drug targets.


Asunto(s)
Leucemia/enzimología , Fragmentos de Péptidos/análisis , Análisis por Matrices de Proteínas , Proteínas Tirosina Quinasas/metabolismo , Western Blotting , Línea Celular Tumoral , Supervivencia Celular , Humanos , Leucemia/patología , Fosforilación , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor trkA/metabolismo , Receptor trkB/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo
10.
Cancer Res ; 69(14): 5987-95, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19567681

RESUMEN

Progression in pediatric brain tumor growth is thought to be the net result of signaling through various protein kinase-mediated networks driving cell proliferation. Defining new targets for treatment of human malignancies, without a priori knowledge on aberrant cell signaling activity, remains exceedingly complicated. Here, we introduce kinome profiling using flow-through peptide microarrays as a new concept for target discovery. Comprehensive tyrosine kinase activity profiles were identified in 29 pediatric brain tumors using the PamChip kinome profiling system. Previously reported activity of epidermal growth factor receptor, c-Met, and vascular endothelial growth factor receptor in pediatric brain tumors could be appreciated in our array results. Peptides corresponding with phosphorylation consensus sequences for Src family kinases showed remarkably high levels of phosphorylation compared with normal tissue types. Src activity was confirmed applying Phos-Tag SDS-PAGE. Furthermore, the Src family kinase inhibitors PP1 and dasatinib induced substantial tumor cell death in nine pediatric brain tumor cell lines but not in control cell lines. Thus, this study describes a new high-throughput technique to generate clinically relevant tyrosine kinase activity profiles as has been shown here for pediatric brain tumors. In the era of a rapidly increasing number of small-molecule inhibitors, this approach will enable us to rapidly identify new potential targets in a broad range of human malignancies.


Asunto(s)
Neoplasias Encefálicas/enzimología , Análisis por Micromatrices/métodos , Proteínas Tirosina Quinasas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Niño , Análisis por Conglomerados , Células HL-60 , Humanos , Immunoblotting , Células K562 , Péptidos/clasificación , Péptidos/metabolismo , Fosforilación , Reproducibilidad de los Resultados , Familia-src Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...