Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 35(21)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38387086

RESUMEN

As the second leading cause of death worldwide, neoplastic diseases are one of the biggest challenges for public health care. Contemporary medicine seeks potential tools for fighting cancer within nanomedicine, as various nanomaterials can be used for both diagnostics and therapies. Among those of particular interest are superparamagnetic iron oxide nanoparticles (SPIONs), due to their unique magnetic properties,. However, while the number of new SPIONs, suitably modified and functionalized, designed for medical purposes, has been gradually increasing, it has not yet been translated into the number of approved clinical solutions. The presented review covers various issues related to SPIONs of potential theranostic applications. It refers to structural considerations (the nanoparticle core, most often used modifications and functionalizations) and the ways of characterizing newly designed nanoparticles. The discussion about the phenomenon of protein corona formation leads to the conclusion that the scarcity of proper tools to investigate the interactions between SPIONs and human serum proteins is the reason for difficulties in introducing them into clinical applications. The review emphasizes the importance of understanding the mechanism behind the protein corona formation, as it has a crucial impact on the effectiveness of designed SPIONs in the physiological environment.


Asunto(s)
Nanopartículas de Magnetita , Neoplasias , Corona de Proteínas , Humanos , Nanopartículas de Magnetita/uso terapéutico , Nanopartículas de Magnetita/química , Medicina de Precisión , Neoplasias/diagnóstico , Neoplasias/terapia , Nanopartículas Magnéticas de Óxido de Hierro
2.
Anal Bioanal Chem ; 416(11): 2819-2833, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38244050

RESUMEN

The reactivity of thioredoxin (Trx1) with the Au(I) drug auranofin (AF) and two therapeutic N-heterocyclic carbene (NHC)2-Au(I) complexes (bis [1-methyl-3-acridineimidazolin-2-ylidene]gold(I) tetrafluoroborate (Au3BC) and [1,3-diethyl-4,5-bis(4methoxyphenyl)imidazol-2-ylidene]gold(I) (Au4BC)) was investigated. Direct infusion (DI) electrospray ionization (ESI) mass spectrometry (MS) allowed information on the structure, stoichiometry, and kinetics of formation of Trx-Au adducts. The fragmentation of the formed adducts in the gas phase gave insights into the exact Au binding site within the protein, demonstrating the preference for Trx1 Cys32 or Cys35 of AF or the (NHC)2-Au(I) complex Au3BC, respectively. Reversed-phase HPLC suffered from the difficulty of elution of gold compounds, did not preserve the formed metal-protein adducts, and favored the loss of ligands (phosphine or NHC) from Au(I). These limitations were eliminated by capillary electrophoresis (CE) which enabled the separation of the gold compounds, Trx1, and the formed adducts. The ICP-MS/MS detection allowed the simultaneous quantitative monitoring of the gold and sulfur isotopes and the determination of the metallation extent of the protein. The hyphenation of the mentioned techniques was used for the analysis of Trx1-Au adducts for the first time.


Asunto(s)
Oro , Espectrometría de Masas en Tándem , Oro/química , Auranofina , Espectrometría de Masa por Ionización de Electrospray , Compuestos de Oro/química , Electroforesis Capilar , Factores Inmunológicos , Cromatografía Liquida , Tiorredoxinas
3.
Plant Physiol Biochem ; 199: 107745, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37172402

RESUMEN

BACKGROUND: Nanotechnology offers many benefits in the globally important field of food production and human nutrition, particularly by implementing agricultural nanoproducts. Of these, edible plant fertilizers enriched with nanosized forms of essential metals, Mn and Fe, are growing in importance with the advantages of enhanced action on plant roots. SCOPE AND APPROACH: This review focuses on the importance of tracking the bioaccumulation and biodistribution of these pertinent nanofertilizers. An emphasis is given to the critical analysis of the state-of-the-art analytical strategies to examine the Mn and Fe nanoparticles in edible plant systems as well as to shedding light on the vast gap in the methodologies dedicated to the speciation, in vitro simulation, and safety testing of these promising nanomaterials. Also provided are guidances for the food chemists and technologists on the lights and shadows of particular analytical approaches as a matter of authors' expertise as analytical chemists. KEY FINDINGS AND CONCLUSIONS: While the use of nanotechnology in agriculture seems to be growing increasingly, there is still a lack of analytical methodologies capable of investigating novel Mn- and Fe-based nanomaterials as potential fertilizers. Only the advent of reliable analytical tools in the field could bridge the gaps in our knowledge about processes in which those materials participate in the plant systems and their effects on crop production and quality of the produced food.


Asunto(s)
Fertilizantes , Plantas Comestibles , Humanos , Fertilizantes/análisis , Manganeso , Distribución Tisular , Agricultura/métodos , Medición de Riesgo , Nanotecnología/métodos
4.
Molecules ; 27(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36500533

RESUMEN

The growing interest in superparamagnetic iron oxide nanoparticles (SPIONs) as potential theranostic agents is related to their unique properties and the broad range of possibilities for their surface functionalization. However, despite the rapidly expanding list of novel SPIONs with potential biomedical applications, there is still a lack of methodologies that would allow in-depth investigation of the interactions of those nanoparticles with biological compounds in human serum. Herein, we present attempts to employ capillary electrophoresis-inductively coupled plasma tandem mass spectrometry (CE-ICP-MS/MS) for this purpose and various obstacles and limitations noticed during the research. The CE and ICP-MS/MS parameters were optimized, and the developed method was used to study the interactions of two different proteins (albumin and transferrin) with various synthesized SPIONs. While the satisfactory resolution between proteins was obtained and the method was applied to examine individual reagents, it was revealed that the conjugates formed during the incubation of the proteins with SPIONs were not stable under the conditions of electrophoretic separation.


Asunto(s)
Compuestos Férricos , Espectrometría de Masas en Tándem , Humanos , Compuestos Férricos/química , Proteínas Sanguíneas/metabolismo , Fenómenos Magnéticos
5.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35163012

RESUMEN

Progress toward translating superparamagnetic iron oxide nanoparticles (SPIONs) with specific diagnostic and therapeutic properties for clinical applications depends on developing and implementing appropriate methodologies that would allow in-depth characterizations of their behavior in a real biological environment. Herein, we report a versatile approach for studying interactions between SPIONs and proteins using single-particle inductively coupled plasma tandem mass spectrometry. By monitoring the changes in the size distribution upon exposure to human serum, the formation of stable protein corona is revealed, accompanied by particle disaggregation.


Asunto(s)
Proteínas Sanguíneas/química , Nanopartículas Magnéticas de Óxido de Hierro/química , Análisis de la Célula Individual/métodos , Humanos , Tamaño de la Partícula , Espectrometría de Masas en Tándem
6.
Appl Spectrosc ; 75(10): 1305-1311, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34259595

RESUMEN

Simple ultraviolet-visible spectroscopy-based methodology was proposed and utilized for the initial characterization of potential changes in selectivity of doped magnetic nanoparticles. Doped and undoped iron(II,III) (Fe3O4) magnetic nanoparticles were synthesized by the coprecipitation method. The doping processes of nanoparticles were confirmed using optical emission spectrometry, while the sizes of undoped and Cu-doped nanoparticles were investigated using a high-resolution field emission scanning electron microscope. The average diameters of nanoparticles were 8.34±1.78 nm and 9.12±1.93 nm, for doped and undoped materials, respectively. The influence of the nanoparticle's doping on their selectivity towards chosen analyte was monitored by the spectral techniques such as ultraviolet-visible and optical emission spectrometry. The interaction between Cu-doped Fe3O4 nanoparticles and cuprizone (a compound forming the characteristic colorful complex with copper) was confirmed. The elaborated studies proved the potential of ultraviolet-visible spectroscopy for the fast qualification of magnetic nanoparticles in terms of their ability to separate the selected analyte from the sample matrix.

7.
Anal Bioanal Chem ; 412(29): 8145-8153, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32968852

RESUMEN

Over the past few years, superparamagnetic iron oxide nanoparticles (SPIONs) have attracted much attention due to their medicinally attractive properties and their possible application in cancer diagnosis and therapy. However, there is still a lack of appropriate methods to enable quantitative monitoring of the particle changes in a physiological environment, which could be beneficial for evaluating their in vitro and in vivo behavior. For this reason, the main goal of this study was the development of a novel capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS/MS) method for the determination of SPIONs suitable for the future examination of their changes upon incubation with proteins under simulated physiological conditions. The type and flow rate of the collision/reaction gas were chosen with the aim of simultaneous monitoring of Fe and S. The type and concentration of the background electrolyte, applied voltage, and sample loading were optimized to obtain SPION signals of the highest intensity and minimum half-width of the peak. Analytical parameters were at a satisfactory level: reproducibility (intra- and inter-day) of migration times and peak areas (presented as RSD) in the range of 0.23-4.98%, recovery: 96.7% and 93.3%, the limit of detection (for monitoring 56Fe16O+ by mass-shift approach) 54 ng mL-1 Fe (0.97 µM) and 101 ng mL-1 Fe (1.82 µM) for SPIONs with carboxyl and amino terminal groups, respectively. To the best of our knowledge, this is the first reported use of CE-ICP-MS/MS for the quantification of SPIONs and monitoring of interactions with proteins.


Asunto(s)
Electroforesis Capilar/métodos , Compuestos Férricos/química , Nanopartículas del Metal/química , Espectrometría de Masas en Tándem/métodos , Proteínas Sanguíneas/química , Humanos , Límite de Detección , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...