RESUMEN
Myasthenia gravis (MG) is a chronic and severe disease of the skeletal neuromuscular junction (NMJ) in which the effects of neurotransmitters are attenuated, leading to muscle weakness. In the most common forms of autoimmune MG, antibodies attack components of the postsynaptic membrane, including the acetylcholine receptor (AChR) or muscle-specific kinase (MuSK). MuSK, a master regulator of NMJ development, associates with the low-density lipoprotein-related receptor 4 (Lrp4) to form the signaling receptor for neuronal Agrin, a nerve-derived synaptic organizer. Pathogenic antibodies to MuSK interfere with binding between MuSK and Lrp4, inhibiting the differentiation and maintenance of the NMJ. MuSK MG can be debilitating and refractory to treatments that are effective for AChR MG. We show here that recombinant antibodies, derived from MuSK MG patients, cause severe neuromuscular disease in mice. The disease can be prevented by a MuSK agonist antibody, presented either prophylactically or after disease onset. These findings suggest a therapeutic alternative to generalized immunosuppression for treating MuSK MG by selectively and directly targeting the disease mechanism.
Asunto(s)
Miastenia Gravis , Unión Neuromuscular , Proteínas Tirosina Quinasas Receptoras , Receptores Colinérgicos , Animales , Proteínas Tirosina Quinasas Receptoras/inmunología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Ratones , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/inmunología , Receptores Colinérgicos/inmunología , Receptores Colinérgicos/metabolismo , Miastenia Gravis/inmunología , Miastenia Gravis/tratamiento farmacológico , Humanos , Proteínas Relacionadas con Receptor de LDL/inmunología , Autoanticuerpos/inmunología , Femenino , Miastenia Gravis Autoinmune Experimental/inmunología , Miastenia Gravis Autoinmune Experimental/tratamiento farmacológico , Anticuerpos/inmunología , Anticuerpos/farmacología , Modelos Animales de Enfermedad , Ácidos Grasos MonoinsaturadosRESUMEN
Muscle-specific kinase (MuSK) is essential for the formation, function, and preservation of neuromuscular synapses. Activation of MuSK by a MuSK agonist antibody may stabilize or improve the function of the neuromuscular junction (NMJ) in patients with disorders of the NMJ, such as congenital myasthenia (CM). Here, we generated and characterized ARGX-119, a first-in-class humanized agonist monoclonal antibody specific for MuSK, that is being developed for treatment of patients with neuromuscular diseases. We performed in vitro ligand-binding assays to show that ARGX-119 binds with high affinity to the Frizzled-like domain of human, nonhuman primate, rat, and mouse MuSK, without off-target binding, making it suitable for clinical development. Within the Fc region, ARGX-119 harbors L234A and L235A mutations to diminish potential immune-activating effector functions. Its mode of action is to activate MuSK, without interfering with its natural ligand neural Agrin, and cluster acetylcholine receptors in a dose-dependent manner, thereby stabilizing neuromuscular function. In a mouse model of DOK7 CM, ARGX-119 prevented early postnatal lethality and reversed disease relapse in adult Dok7 CM mice by restoring neuromuscular function and reducing muscle weakness and fatigability in a dose-dependent manner. Pharmacokinetic studies in nonhuman primates, rats, and mice revealed a nonlinear PK behavior of ARGX-119, indicative of target-mediated drug disposition and in vivo target engagement. On the basis of this proof-of-concept study, ARGX-119 has the potential to alleviate neuromuscular diseases hallmarked by impaired neuromuscular synaptic function, warranting further clinical development.
Asunto(s)
Modelos Animales de Enfermedad , Síndromes Miasténicos Congénitos , Proteínas Tirosina Quinasas Receptoras , Receptores Colinérgicos , Animales , Proteínas Tirosina Quinasas Receptoras/metabolismo , Humanos , Síndromes Miasténicos Congénitos/tratamiento farmacológico , Receptores Colinérgicos/metabolismo , Ratones , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/patología , Recurrencia , Ratas , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/farmacologíaRESUMEN
Muscle-specific kinase (MuSK) is crucial for acetylcholine receptor (AChR) clustering and thereby neuromuscular junction (NMJ) function. NMJ dysfunction is a hallmark of several neuromuscular diseases, including MuSK myasthenia gravis. Aiming to restore NMJ function, we generated several agonist monoclonal antibodies targeting the MuSK Ig-like 1 domain. These activated MuSK and induced AChR clustering in cultured myotubes. The most potent agonists partially rescued myasthenic effects of MuSK myasthenia gravis patient IgG autoantibodies in vitro. In an IgG4 passive transfer MuSK myasthenia model in NOD/SCID mice, MuSK agonists caused accelerated weight loss and no rescue of myasthenic features. The MuSK Ig-like 1 domain agonists unexpectedly caused sudden death in a large proportion of male C57BL/6 mice (but not female or NOD/SCID mice), likely caused by a urologic syndrome. In conclusion, these agonists rescued pathogenic effects in myasthenia models in vitro, but not in vivo. The sudden death in male mice of one of the tested mouse strains revealed an unexpected and unexplained role for MuSK outside skeletal muscle, thereby hampering further (pre-) clinical development of these clones. Future research should investigate whether other Ig-like 1 domain MuSK antibodies, binding different epitopes, do hold a safe therapeutic promise.
Asunto(s)
Miastenia Gravis , Proteínas Tirosina Quinasas Receptoras , Masculino , Animales , Ratones , Ratones SCID , Proteínas Tirosina Quinasas Receptoras/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Miastenia Gravis/metabolismo , Receptores Colinérgicos/metabolismo , Autoanticuerpos , Debilidad Muscular , AcetilcolinaRESUMEN
BACKGROUND AND OBJECTIVES: To determine the role of complement in the disease pathology of multifocal motor neuropathy (MMN), we investigated complement activation, and inhibition, on binding of MMN patient-derived immunoglobulin M (IgM) antibodies in an induced pluripotent stem cell (iPSC)-derived motor neuron (MN) model for MMN. METHODS: iPSC-derived MNs were characterized for the expression of complement receptors and membrane-bound regulators, for the binding of circulating IgM anti-GM1 from patients with MMN, and for subsequent fixation of C4 and C3 on incubation with fresh serum. The potency of ARGX-117, a novel inhibitory monoclonal antibody targeting C2, to inhibit fixation of complement was assessed. RESULTS: iPSC-derived MNs moderately express the complement regulatory proteins CD46 and CD55 and strongly expressed CD59. Furthermore, MNs express C3aR, C5aR, and complement receptor 1. IgM anti-GM1 antibodies in serum from patients with MMN bind to MNs and induce C3 and C4 fixation on incubation with fresh serum. ARGX-117 inhibits complement activation downstream of C4 induced by patient-derived anti-GM1 antibodies bound to MNs. DISCUSSION: Binding of IgM antibodies from patients with MMN to iPSC-derived MNs induces complement activation. By expressing complement regulatory proteins, particularly CD59, MNs are protected against complement-mediated lysis. Yet, because of expressing C3aR, the function of these cells may be affected by complement activation upstream of membrane attack complex formation. ARGX-117 inhibits complement activation upstream of C3 in this disease model for MMN and therefore represents an intervention strategy to prevent harmful effects of complement in MMN.
Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Activación de Complemento/inmunología , Complemento C2/efectos de los fármacos , Neuronas Motoras , Polineuropatías/tratamiento farmacológico , Polineuropatías/inmunología , Células Cultivadas , Humanos , Inmunoglobulina M , Células Madre Pluripotentes InducidasRESUMEN
BACKGROUND: The clinical benefit of cusatuzumab, a CD70-directed monoclonal antibody with enhanced effector functions, was investigated in patients with relapsed/refractory (R/R) cutaneous T-cell lymphoma (CTCL). METHODS: In this cohort expansion of the ARGX-110-1201 study, 27 patients with R/R CTCL received cusatuzumab at 1 (n = 11) or 5 mg/kg (n = 16) once every 3 weeks to investigate its safety, dose, and exploratory efficacy. The pharmacokinetics, immunogenicity, CD70 expression, and CD70/CD27 biology were also assessed. RESULTS: The most common adverse events included infusion-related reactions, pyrexia, and asthenia. Eighteen serious adverse events (grade 1-3) were reported in 11 patients; 1 of these (vasculitis) was considered drug-related. For 8 of the 11 patients receiving 1 mg/kg, anti-drug antibodies (ADAs) affected the minimal concentration, and this resulted in undetectable cusatuzumab concentrations at the end of treatment and, in some cases, a loss of response. This effect was greatly reduced in the patients receiving 5 mg/kg. The overall response rate was 23%; this included 1 complete response and 5 partial responses (PRs) in 26 of the 27 evaluable patients. In addition, 9 patients achieved stable disease. The mean duration on cusatuzumab was 5.2 months, and the median duration was 2.5 months. Patients with Sézary syndrome (SS) achieved a 60% PR rate with a dosage of 5 mg/kg and a 33% PR rate with a dosage of 1 mg/kg; this resulted in an overall response rate of 50% for patients with SS at both doses. CONCLUSIONS: Cusatuzumab was well tolerated, and antitumor activity was observed at both 1 and 5 mg/kg in highly pretreated patients with R/R CTCL. The observed dose-dependent effect on exposure supports the use of 5 mg/kg for future development.
Asunto(s)
Anticuerpos Monoclonales , Antineoplásicos , Linfoma Cutáneo de Células T , Neoplasias Cutáneas , Anticuerpos Monoclonales/efectos adversos , Antineoplásicos/uso terapéutico , Ligando CD27 , Humanos , Linfoma Cutáneo de Células T/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Neoplasias Cutáneas/tratamiento farmacológico , Resultado del TratamientoRESUMEN
BACKGROUND: Activation of the classical and lectin pathway of complement may contribute to tissue damage and organ dysfunction of antibody-mediated diseases and ischemia-reperfusion conditions. Complement factors are being considered as targets for therapeutic intervention. OBJECTIVE: We sought to characterize ARGX-117, a humanized inhibitory monoclonal antibody against complement C2. METHODS: The mode-of-action and binding characteristics of ARGX-117 were investigated in detail. Furthermore, its efficacy was analyzed in in vitro complement cytotoxicity assays. Finally, a pharmacokinetic/pharmacodynamic study was conducted in cynomolgus monkeys. RESULTS: Through binding to the Sushi-2 domain of C2, ARGX-117 prevents the formation of the C3 proconvertase and inhibits classical and lectin pathway activation upstream of C3 activation. As ARGX-117 does not inhibit the alternative pathway, it is expected not to affect the antimicrobial activity of this complement pathway. ARGX-117 prevents complement-mediated cytotoxicity in in vitro models for autoimmune hemolytic anemia and antibody-mediated rejection of organ transplants. ARGX-117 exhibits pH- and calcium-dependent target binding and is Fc-engineered to increase affinity at acidic pH to the neonatal Fc receptor, and to reduce effector functions. In cynomolgus monkeys, ARGX-117 dose-dependently reduces free C2 levels and classical pathway activity. A 2-dose regimen of 80 and 20 mg/kg separated by a week, resulted in profound reduction of classical pathway activity lasting for at least 7 weeks. CONCLUSIONS: ARGX-117 is a promising new complement inhibitor that is uniquely positioned to target both the classical and lectin pathways while leaving the alternative pathway intact.
Asunto(s)
Anticuerpos Monoclonales/farmacología , Complemento C2/antagonistas & inhibidores , Inactivadores del Complemento/farmacología , Animales , Anticuerpos Monoclonales/sangre , Anticuerpos Monoclonales/farmacocinética , Calcio , Activación de Complemento/efectos de los fármacos , Complemento C2/análisis , Complemento C2/metabolismo , Inactivadores del Complemento/sangre , Inactivadores del Complemento/farmacocinética , Mapeo Epitopo , Femenino , Humanos , Concentración de Iones de Hidrógeno , Macaca fascicularis , MasculinoRESUMEN
In contrast to the negligible expression of the immunomodulating protein CD70 in normal tissue, we have demonstrated constitutive overexpression of CD70 on tumor cells in a subset of primary non-small cell lung cancer (NSCLC) biopsies. This can be exploited by CD70-targeting antibody-dependent cellular cytotoxicity (ADCC)-inducing antibodies. Early clinical trials of these antibodies have already shown promising results in CD70-positive malignancies. In this study, we explored the potential of cisplatin to induce CD70 expression in NSCLC. Using real-time measurement tools, we also assessed the efficacy of a combination regimen with cisplatin and anti-CD70 therapy under normoxia and hypoxia. We identified an induction of CD70 expression on lung cancer cells upon low doses of cisplatin, independent of oxygen levels. More importantly, the use of cisplatin resulted in an enhanced ADCC-effect of anti-CD70 therapy. As such, this combination regimen led to a significant decrease in lung cancer cell survival cell survival, broadening the applicability the applicability of CD70-targeting therapy. This is the first study that proves the potential of a combination therapy with cisplatin and CD70-targeting drugs in NSCLC. Based on our data, we postulate that this combination strategy is an interesting approach to increase tumor-specific cytotoxicity and reduce drug-related side effects.
RESUMEN
Purpose: The purpose of this study was to evaluate safety, pharmacokinetics, pharmacodynamics, and preliminary antitumor efficacy of ARGX-110, a glyco-engineered monoclonal antibody, targeting CD70, in patients with CD70 expressing advanced malignancies.Experimental Design: Dose escalation with a sequential 3+3 design was performed in five steps at the 0.1, 1, 2, 5, and 10 mg/kg dose levels (N = 26). ARGX-110 was administered intravenously every 3 weeks until progression or intolerable toxicity. Dose-limiting toxicity was evaluated in the 21 days following the first ARGX-110 administration (Cycle 1). Samples for pharmacokinetics and pharmacodynamics were collected.Results: Dose-limiting toxicity was not observed and the maximum tolerated dose was not reached. ARGX-110 was generally well tolerated, with no dose-related increase in treatment-emergent adverse events (TEAE). The most common TEAE were fatigue and drug related infusion-related reactions (IRR). Of the 20 SAEs reported, five events, all IRRs, were considered related to ARGX-110. ARGX-110 demonstrates dose proportionality over the dose range 1 to 10 mg/kg, but not at 0.1 mg/kg and a terminal half-life of 10 to 13 days. The best overall response was stable disease (14/26) in all 26 evaluable patients with various malignancies and the mean duration of treatment was 15 weeks. No dose-response related antitumor activity was observed, but biomarker readouts provided signs of biological activity, particularly in patients with hematologic malignancies.Conclusions: This dose-escalation phase I trial provides evidence of good tolerability of ARGX-110, pharmacokinetics, and preliminary antitumor activity at all dose levels in generally heavily pretreated patients with advanced CD70-positive malignancies. Clin Cancer Res; 23(21); 6411-20. ©2017 AACR.
Asunto(s)
Anticuerpos Antiidiotipos/administración & dosificación , Anticuerpos Monoclonales/administración & dosificación , Ligando CD27/inmunología , Neoplasias/tratamiento farmacológico , Adulto , Anciano , Anticuerpos Antiidiotipos/efectos adversos , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/farmacocinética , Ligando CD27/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/clasificación , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Femenino , Humanos , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Neoplasias/inmunología , Neoplasias/patologíaRESUMEN
The activity of tumor necrosis factor (TNF), a cytokine involved in inflammatory pathologies, can be inhibited by antibodies or trap molecules. Herein, llama-derived variable heavy-chain domains of heavy-chain antibody (VHH, also called Nanobodies™) were generated for the engineering of bivalent constructs, which antagonize the binding of TNF to its receptors with picomolar potencies. Three monomeric VHHs (VHH#1, VHH#2, and VHH#3) were characterized in detail and found to bind TNF with sub-nanomolar affinities. The crystal structures of the TNF-VHH complexes demonstrate that VHH#1 and VHH#2 share the same epitope, at the center of the interaction area of TNF with its TNFRs, while VHH#3 binds to a different, but partially overlapping epitope. These structures rationalize our results obtained with bivalent constructs in which two VHHs were coupled via linkers of different lengths. Contrary to conventional antibodies, these bivalent Nanobody™ constructs can bind to a single trimeric TNF, thus binding with avidity and blocking two of the three receptor binding sites in the cytokine. The different mode of binding to antigen and the engineering into bivalent constructs supports the design of highly potent VHH-based therapeutic entities.
RESUMEN
AIMS: During recent years, immune checkpoint inhibition has proved to be effective in several solid malignancies. The aim of this study was to identify novel targets for immunotherapy in anaplastic thyroid cancer by analysis of the expression of tumour antigens for which therapeutic agents are available. METHOD AND RESULTS: By immunohistochemistry we observed tumoral expression of CD70 in 49% of cases. Expression of its receptor, CD27, was present mainly in lymphocytes surrounding and infiltrating the tumour and observed only rarely in tumour cells. CD70 expression was associated with the presence of a precursor papillary thyroid carcinoma and the presence of BRAF V600E mutations in the anaplastic thyroid cancer lesion. Furthermore, the expression of CD70 seems stable during progression of the disease. Tumoral expression of programmed cell death ligand 1 (PD-L1) was found in 28.6% of the anaplastic thyroid cancer cases. Programmed cell death 1 (PD-1), the receptor of PD-L1, was not expressed on the tumour cells. No association between CD70 expression and PD-L1 expression could be demonstrated. CONCLUSION: These data suggest that targeted immunotherapy for CD70/CD27 and PD-L1/PD-1 might be promising in anaplastic thyroid cancer. However, as a low amount of tumour-infiltrating lymphocytes was observed in most lesions, combined therapy with agents enhancing the invasion of lymphocytes in the tumour region needs to be considered.
Asunto(s)
Antígeno B7-H1/biosíntesis , Biomarcadores de Tumor/análisis , Ligando CD27/biosíntesis , Inmunoterapia/métodos , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Adulto , Anciano , Antígenos de Neoplasias/análisis , Antígeno B7-H1/análisis , Ligando CD27/análisis , Femenino , Humanos , Masculino , Persona de Mediana EdadRESUMEN
Hepatocyte growth factor (HGF) and its receptor MET represent validated targets for cancer therapy. However, HGF/MET inhibitors being explored as cancer therapeutics exhibit cytostatic activity rather than cytotoxic activity, which would be more desired. In this study, we engineered an antagonistic anti-MET antibody that, in addition to blocking HGF/MET signaling, also kills MET-overexpressing cancer cells by antibody-dependent cellular cytotoxicity (ADCC). As a control reagent, we engineered the same antibody in an ADCC-inactive form that is similarly capable of blocking HGF/MET activity, but in the absence of any effector function. In comparing these two antibodies in multiple mouse models of cancer, including HGF-dependent and -independent tumor xenografts, we determined that the ADCC-enhanced antibody was more efficacious than the ADCC-inactive antibody. In orthotopic mammary carcinoma models, ADCC enhancement was crucial to deplete circulating tumor cells and to suppress metastases. Prompted by these results, we optimized the ADCC-enhanced molecule for clinical development, generating an antibody (ARGX-111) with improved pharmacologic properties. ARGX-111 competed with HGF for MET binding, inhibiting ligand-dependent MET activity, downregulated cell surface expression of MET, curbing HGF-independent MET activity, and engaged natural killer cells to kill MET-expressing cancer cells, displaying MET-specific cytotoxic activity. ADCC assays confirmed the cytotoxic effects of ARGX-111 in multiple human cancer cell lines and patient-derived primary tumor specimens, including MET-expressing cancer stem-like cells. Together, our results show how ADCC provides a therapeutic advantage over conventional HGF/MET signaling blockade and generates proof-of-concept for ARGX-111 clinical testing in MET-positive oncologic malignancies.
Asunto(s)
Anticuerpos Monoclonales/farmacología , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Factor de Crecimiento de Hepatocito/metabolismo , Neoplasias/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-met/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Unión Competitiva , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Citometría de Flujo , Humanos , Ratones Desnudos , Neoplasias/metabolismo , Neoplasias/patología , Unión Proteica , Proteínas Proto-Oncogénicas c-met/inmunología , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto/métodosRESUMEN
Although normally restricted to activated T and B cells and mature dendritic cells, constitutive expression of CD70, a member of the tumor necrosis family, has been described in both hematological and solid tumors, where it increases tumor cell and regulatory T cell survival by signaling through its receptor, CD27.We have assessed the co-expression of CD70 and CD27 in non-small cell lung cancer (NSCLC) by immunohistochemistry to explore a correlation between expression of the protein and tumor histologic subtype, genetic aberrations and prognosis. Furthermore, we tested the ability of ARGX-110, a CD70-blocking antibody, to induce NK cell-mediated cytotoxicity.Our results revealed CD70 expression on the surface of both primary and metastatic NSCLC tumor cells and in the tumor microenvironment. Moreover, CD27-expressing tumor infiltrating lymphocytes were found adjacent to the tumor cells, suggesting active CD70-mediated signaling. Finally, we have shown that ARGX-110, has potent cytotoxic effects on CD70+ NSCLC cell lines.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Ligando CD27/biosíntesis , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Neoplasias Pulmonares/inmunología , Ligando CD27/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Humanos , Inmunización Pasiva/métodos , Inmunohistoquímica , Neoplasias Pulmonares/patología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/patología , Terapia Molecular Dirigida , Transducción de Señal , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/biosíntesis , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunologíaRESUMEN
Overexpression of CD70 has been documented in a variety of solid and hematological tumors, where it is thought to play a role in tumor proliferation and evasion of immune surveillance. Here, we describe ARGX-110, a defucosylated IgG1 monoclonal antibody (mAb) that selectively targets and neutralizes CD70, the ligand of CD27. ARGX-110 was generated by immunization of outbred llamas. The antibody was germlined to 95% human identity, and its anti-tumor efficacy was tested in several in vitro assays. ARGX-110 binds CD70 with picomolar affinity. In depletion studies, ARGX-110 lyses tumor cells with greater efficacy than its fucosylated version. In addition, ARGX-110 demonstrates strong complement-dependent cytotoxicity and antibody-dependent cellular phagocytosis activity. ARGX-110 inhibits signaling of CD27, which results in blocking of the activation and proliferation of Tregs. In a Raji xenograft model, administration of the fucosylated version of ARGX-110 resulted in a prolonged survival at doses of 0.1 mg/kg and above. The pharmacokinetics of ARGX-110 was tested in cynomolgus monkeys; the calculated half-life is 12 days. In conclusion, ARGX-110 is a potent blocking mAb with a dual mode of action against both CD70-bearing tumor cells and CD70-dependent Tregs. This antibody is now in a Phase 1 study in patients with advanced malignancies expressing CD70 (NCT01813539).
Asunto(s)
Anticuerpos Monoclonales/metabolismo , Antineoplásicos/metabolismo , Ligando CD27/inmunología , Inmunoglobulina G/metabolismo , Inmunoterapia/métodos , Neoplasias/terapia , Linfocitos T Reguladores/efectos de los fármacos , Animales , Anticuerpos Monoclonales/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Antineoplásicos/inmunología , Camélidos del Nuevo Mundo , Puntos de Control del Ciclo Celular/inmunología , Células Cultivadas , Humanos , Inmunoglobulina G/inmunología , Activación de Linfocitos/efectos de los fármacos , Neoplasias/inmunología , Transducción de Señal/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/antagonistas & inhibidoresRESUMEN
Expression of fibroblast growth factor (FGF)-inducible 14 (Fn14), a member of the tumor necrosis factor receptor superfamily, is typically low in healthy adult organisms, but strong Fn14 expression is induced in tissue injury and tissue remodeling. High Fn14 expression is also observed in solid tumors, which is why this receptor is under consideration as a therapeutic target in oncology. Here, we describe various novel mouse-human cross-reactive llama-derived recombinant Fn14-specific antibodies (5B6, 18D1, 4G5) harboring the human IgG1 Fc domain. In contrast to recombinant variants of the established Fn14-specific antibodies PDL192 and P4A8, all three llama-derived antibodies efficiently bound to the W42A and R56P mutants of human Fn14. 18D1 and 4G5, but not 5B6, efficiently blocked TNF-like weak inducer of apoptosis(TWEA K) binding at low concentrations (0.22 µg/ml). Oligomerization and Fcγ receptor (FcγR) binding converted all antibodies into strong Fn14 agonists. Variants of 18D1 with enhanced and reduced antibody-dependent cell-mediated cytotoxicity (ADCC) activity were further analyzed in vivo with respect to their effect on metastasis. In a xenogeneic model using human colon carcinoma cancer cells, both antibody variants were effective in reducing metastasis to the liver. In contrast, only the 18D1 variant with enhanced ADCC activity, but not its ADCC-defective counterpart, suppressed lung metastasis in the RE NCA model. In sum, this suggests that Fn14 targeting might primarily act by triggering of antibody effector functions, but also by blockade of TWEA K-Fn14 interaction in some cases
Asunto(s)
Anticuerpos Antineoplásicos/farmacología , Camélidos del Nuevo Mundo/inmunología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Proteínas de Neoplasias/inmunología , Receptores del Factor de Necrosis Tumoral/inmunología , Animales , Anticuerpos Antineoplásicos/inmunología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Neoplasias del Colon/inmunología , Neoplasias del Colon/patología , Células HEK293 , Xenoinjertos , Humanos , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Ratones , Metástasis de la Neoplasia , Trasplante de Neoplasias , Receptor de TWEAK , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Neutralizing the interaction of the platelet receptor gpIb with VWF is an attractive strategy to treat and prevent thrombotic complications. ALX-0081 is a bivalent Nanobody which specifically targets the gpIb-binding site of VWF and interacts avidly with VWF. Nanobodies are therapeutic proteins derived from naturally occurring heavy-chain-only Abs and combine a small molecular size with a high inherent stability. ALX-0081 exerts potent activity in vitro and in vivo. Perfusion experiments with blood from patients with acute coronary syndrome on standard antithrombotics demonstrated complete inhibition of platelet adhesion after addition of ALX-0081, while in the absence of ALX-0081 residual adhesion was observed. In a baboon efficacy and safety model measuring acute thrombosis and surgical bleeding, ALX-0081 showed a superior therapeutic window compared with marketed antithrombotics. Pharmacokinetic and biodistribution experiments demonstrated target-mediated clearance of ALX-0081, which leads to a self-regulating disposition behavior. In conclusion, these preclinical data demonstrate that ALX-0081 combines a high efficacy with an improved safety profile compared with currently marketed antithrombotics. ALX-0081 has entered clinical development.
Asunto(s)
Anticuerpos Biespecíficos/farmacocinética , Fibrinolíticos/farmacología , Cadenas Pesadas de Inmunoglobulina/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Anticuerpos de Cadena Única/farmacocinética , Trombosis/tratamiento farmacológico , Animales , Especificidad de Anticuerpos , Sitios de Unión/inmunología , Fibrinolíticos/inmunología , Humanos , Técnicas In Vitro , Macaca fascicularis , Papio , Adhesividad Plaquetaria/efectos de los fármacos , Adhesividad Plaquetaria/inmunología , Complejo GPIb-IX de Glicoproteína Plaquetaria/inmunología , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Flujo Pulsátil/fisiología , Trombosis/inmunología , Factor de von Willebrand/inmunología , Factor de von Willebrand/metabolismoRESUMEN
OBJECTIVE: The advent of tumor necrosis factor (TNF)-blocking drugs has provided rheumatologists with an effective, but highly expensive, treatment for the management of established rheumatoid arthritis (RA). Our aim was to explore preclinically the application of camelid anti-TNF VHH proteins, which are single-domain antigen binding (VHH) proteins homologous to human immunoglobulin V(H) domains, as TNF antagonists in a mouse model of RA. METHODS: Llamas were immunized with human and mouse TNF, and antagonistic anti-TNF VHH proteins were isolated and cloned for bacterial production. The resulting anti-TNF VHH proteins were recombinantly linked to yield bivalent mouse and human TNF-specific molecules. To increase the serum half-life and targeting properties, an anti-serum albumin anti-TNF VHH domain was incorporated into the bivalent molecules. The TNF-neutralizing potential was analyzed in vitro. Mouse TNF-specific molecules were tested in a therapeutic protocol in murine collagen-induced arthritis (CIA). Disease progression was evaluated by clinical scoring and histologic evaluation. Targeting properties were evaluated by 99mTc labeling and gamma camera imaging. RESULTS: The bivalent molecules were up to 500 times more potent than the monovalent molecules. The antagonistic potency of the anti-human TNF VHH proteins exceeded even that of the anti-TNF antibodies infliximab and adalimumab that are used clinically in RA. Incorporation of binding affinity for albumin into the anti-TNF VHH protein significantly prolonged its serum half-life and promoted its targeting to inflamed joints in the murine CIA model of RA. This might explain the excellent therapeutic efficacy observed in vivo. CONCLUSION: These data suggest that because of the flexibility of their format, camelid anti-TNF VHH proteins can be converted into potent therapeutic agents that can be produced and purified cost-effectively.
Asunto(s)
Antirreumáticos/uso terapéutico , Artritis Experimental/terapia , Cadenas Pesadas de Inmunoglobulina/inmunología , Cadenas Pesadas de Inmunoglobulina/uso terapéutico , Región Variable de Inmunoglobulina/inmunología , Región Variable de Inmunoglobulina/uso terapéutico , Factor de Necrosis Tumoral alfa/inmunología , Adalimumab , Animales , Anticuerpos/inmunología , Anticuerpos/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados , Camélidos del Nuevo Mundo/inmunología , Semivida , Cadenas Pesadas de Inmunoglobulina/sangre , Región Variable de Inmunoglobulina/sangre , Infliximab , Ratones , Ratones Endogámicos BALB CRESUMEN
Clefts on protein surfaces are avoided by antigen-combining sites of conventional antibodies, in contrast to heavy-chain antibodies (HCAbs) of camelids that seem to be attracted by enzymes' substrate pockets. The explanation for this pronounced preference of HCAbs was investigated. Eight single domain antigen-binding fragments of HCAbs (VHH) with nanomolar affinities for lysozyme were isolated from three immunized dromedaries. Six of eight VHHs compete with small lysozyme inhibitors. This ratio of active site binders is also found within the VHH pool derived from polyclonal HCAbs purified from the serum of the immunized dromedary. The crystal structures of six VHHs in complex with lysozyme and their interaction surfaces were compared to those of conventional antibodies with the same antigen. The interface sizes of VHH and conventional antibodies to lysozyme are very similar as well as the number and chemical nature of the contacts. The main difference comes from the compact prolate shape of VHH that presents a large convex paratope, predominantly formed by the H3 loop and interacting, although with different structures, into the concave lysozyme substrate-binding pocket. Therefore, a single domain antigen-combining site has a clear structural advantage over a conventional dimeric format for targeting clefts on antigenic surfaces.
Asunto(s)
Afinidad de Anticuerpos , Camelus/inmunología , Mapeo Epitopo , Cadenas Pesadas de Inmunoglobulina/química , Cadenas Pesadas de Inmunoglobulina/inmunología , Animales , Anticuerpos/química , Anticuerpos/inmunología , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Cristalografía por Rayos X , Cinética , Muramidasa/inmunología , Estructura Terciaria de ProteínaRESUMEN
Von Willebrand factor (VWF) is unable to interact spontaneously with platelets because this interaction requires a conversion of the VWF A1 domain into a glycoprotein Ibalpha (GpIbalpha) binding conformation. Here, we discuss a llama-derived antibody fragment (AU/VWFa-11) that specifically recognizes the GpIbalpha-binding conformation. AU/VWFa-11 is unable to bind VWF in solution, but efficiently interacts with ristocetin- or botrocetin-activated VWF, VWF comprising type 2B mutation R1306Q, or immobilized VWF. These unique properties allowed us to use AU/VWFa-11 for the detection of activated VWF in plasma of patients characterized by spontaneous VWF-platelet interactions: von Willebrand disease (VWD) type 2B and thrombotic thrombocytopenic purpura (TTP). For VWD type 2B, levels of activated VWF were increased 12-fold (P < .001) compared to levels in healthy volunteers. An inverse correlation between activated VWF levels and platelet count was observed (R2 = 0.74; P < .003). With regard to TTP, a 2-fold (P < .001) increase in activated VWF levels was found in plasma of patients with acquired TTP, whereas an 8-fold increase (P < .003) was found in congenital TTP. No overlap in levels of activated VWF could be detected between acquired and congenital TTP, suggesting that AU/VWFa-11 could be used to distinguish between both disorders. Furthermore, it could provide a tool to investigate the role of VWF in the development of thrombocytopenia in various diseases.
Asunto(s)
Proteínas ADAM/deficiencia , Anticuerpos/inmunología , Nanomedicina , Enfermedades de von Willebrand/metabolismo , Factor de von Willebrand/metabolismo , Proteínas ADAM/metabolismo , Proteína ADAMTS13 , Animales , Plaquetas/metabolismo , Camélidos del Nuevo Mundo , Humanos , Fenotipo , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Púrpura Trombocitopénica Trombótica/metabolismo , Soluciones , Factor de von Willebrand/inmunologíaRESUMEN
A central paradigm in immunology states that successful generation of high affinity antibodies necessitates an immense primary repertoire of antigen-combining sites. Much of the diversity of this repertoire is provided by varying one antigen binding loop, created by inserting randomly a D (diversity) gene out of a small pool between the V and J genes. It is therefore assumed that any particular D-encoded region surrounded by different V and J regions adopts a different conformation. We have solved the structure of two lysozyme-specific variable domains of heavy-chain antibodies isolated from two strictly unrelated dromedaries. These antibodies recombined identical D gene sequences to different V and J precursors with significant variance in their V(D)J junctions. Despite these large differences, the D-encoded loop segments adopt remarkably identical architectures, thus directing the antibodies toward identical epitopes. Furthermore, a striking convergent maturation process occurred in the V region, adapting both binders for their sub-nanomolar affinity association with lysozyme. Hence, on a structural level, humoral immunity may rely more on well developed maturation and selection systems than on the acquisition of large primary repertoires.