Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Platelets ; 35(1): 2313362, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38380806

RESUMEN

Coagulation disturbances are major contributors to COVID-19 pathogenicity, but limited data exist on the involvement of extracellular vesicles (EVs) and residual cells (RCs). Fifty hospitalized COVID-19 patients stratified by their D-dimer levels into high (>1.5 mg/L, n = 15) or low (≤1.5 mg/l, n = 35) and 10 healthy controls were assessed for medium-sized EVs (mEVs; 200-1000 nm) and large EVs/RCs (1000-4000 nm) by high sensitivity flow cytometry. EVs were analyzed for CD61, CD235a, CD45, and CD31, commonly used to detect platelets, red blood cells, leukocytes or endothelial cells, respectively, whilst phosphatidyl serine EVs/RCs were detected by lactadherin-binding implicating procoagulant catalytic surface. Small EV detection (sEVs; 50-200 nm) and CD41a (platelet integrin) colocalization with general EV markers CD9, CD63, and CD81 were performed by single particle interferometric reflectance imaging sensor. Patients with increased D-dimer exhibited the highest number of RCs and sEVs irrespective of cell origin (p < .05). Platelet activation, reflected by increased CD61+ and lactadherin+ mEV and RC levels, associated with coagulation disturbances. Patients with low D-dimer could be discriminated from controls by tetraspanin signatures of the CD41a+ sEVs, suggesting the changes in the circulating platelet sEV subpopulations may offer added prognostic value during COVID progression.


What is the context? Coronavirus disease 19 (COVID-19) frequently leads to blood clotting disturbances, including thromboses.Particles smaller than cells, extracellular vesicles (EVs), and residual cells (RCs) affect blood clotting, but data on their role and diagnostic utility in COVID-19 are sparse.What is new? In this study, we assessed 50 hospitalized COVID-19 patients and 10 healthy controls for their different EV subpopulations and residual cells (50­4000 nm).Blood clotting marker D-dimer, which is elevated in severe COVID-19 infection, was used to characterize disease severity and stratify the patient subgroups. Fifteen patients (30%) with high D-dimer (>1.5 mg/L) were compared to controls, and 35 patients with lower D-dimer (≤1.5 mg/mL).The most topical state-of-the-art methods for detection of EV subpopulations, that is, high sensitivity flow cytometry (hsFCM) and single particle interferometric reflectance imaging sensor (SP-IRIS), were used with markers indicative of platelet, red blood cell, leukocyte or endothelial cells. The subpopulations differentiated by platelet and tetraspanin signatures by hsFCM and SP-IRIS, respectively.The main findings are Patients with high D-dimer systematically exhibited the highest number of platelet EVs in all subpopulations (p < .05).Small EVs subpopulations (differentiated by the tetraspanin signatures) could discriminate patients with low D-dimer (p < .001) from healthy controls.Differences between the two D-dimer groups were seen in the platelet-derived (large and medium EVs and RCs), RBC-derived mEVs and l EVs and RCs, and lactadherin-positive large EVs and RCs (p < .05).What is the impact? Platelet activation, reflected by increased EVs was associated with blood clotting disturbances. Small EVs signatures revealed changes in the EV subpopulations in association with blood clotting during COVID-19. Such signatures may enable identification of severely ill patients before the increase in coagulation is evident by coagulation parameters, for example, by high D-dimer.


Asunto(s)
COVID-19 , Vesículas Extracelulares , Humanos , Células Endoteliales , Plaquetas , Activación Plaquetaria
2.
Arthritis Res Ther ; 26(1): 33, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254142

RESUMEN

BACKGROUND: Emerging evidence suggests that extracellular vesicles (EVs) can play roles in inflammatory processes and joint degradation in primary osteoarthritis (OA), a common age-associated joint disease. EV subpopulations express tetraspanins and platelet markers that may reflect OA pathogenesis. The present study investigated the associations between these EV surface markers and articular cartilage degradation, subjectively and objectively assessed pain, and functional limitations in primary knee OA (KOA). METHODS: Serum EVs were determined by high-sensitivity flow cytometry (large CD61+ EVs) and single particle interferometric reflectance imaging sensor (small CD41+, CD63+, CD81+, and CD9+ EVs) from end-stage KOA patients and controls (n = 8 per group). Knee pain and physical functions were assessed with several health- and pain-related questionnaires, established measurements of physical medicine, and neuromuscular examination. The obtained data were analyzed using supervised and unsupervised univariate and multivariate models. RESULTS: With the combined dataset of cartilage thickness, knee function, pain, sensation, and EV molecular signatures, we identified highly correlated groups of variables and found several EV markers that were statistically significant predictors of pain, physical limitations, and other aspects of well-being for KOA patients, for instance CD41+/CD63+/CD9+ small EVs associated with the range of motion of the knee, physical performance, and pain sensitivity. CONCLUSIONS: Particular serum EV subpopulations showed clear associations with KOA pain and functional limitations, suggesting that their implications in OA pathophysiology warrant further study.


Asunto(s)
Vesículas Extracelulares , Osteoartritis de la Rodilla , Humanos , Percepción del Dolor , Dolor , Articulación de la Rodilla
3.
J Extracell Vesicles ; 13(1): e12400, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38193375

RESUMEN

Blood is the most commonly used body fluid for obtaining and studying extracellular vesicles (EVs). While blood is a standard choice for clinical analysis, using blood as a source of EVs introduces multiple layers of complexity. At the Blood Extracellular Vesicle Workshop organized by the International Society for Extracellular Vesicles in Helsinki (2022), it became evident that beginner researchers lack trustworthy information on how to initiate their research and avoid common pitfalls. This educational guide explains the composition and frequently used terminology of blood, provides guidelines for blood collection, and the preparation of plasma and serum. It also introduces the basic principles of isolating and detecting blood EVs while considering blood-related factors. The goal of this guide is to assist beginners by offering a concise and evidence-based introduction to the current knowledge and available resources to study blood EVs.


Asunto(s)
Líquidos Corporales , Vesículas Extracelulares , Humanos , Plasma
4.
J Extracell Vesicles ; 12(12): e12385, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38063210

RESUMEN

Blood is the most commonly used body fluid for extracellular vesicle (EV) research. The composition of a blood sample and its derivatives (i.e., plasma and serum) are not only donor-dependent but also influenced by collection and preparation protocols. Since there are hundreds of pre-analytical protocols and over forty variables, the development of standard operating procedures for EV research is very challenging. To improve the reproducibility of blood EV research, the International Society for Extracellular Vesicles (ISEV) Blood EV Task Force proposes standardized reporting of (i) the applied blood collection and preparation protocol and (ii) the quality of the prepared plasma and serum samples. Gathering detailed information will provide insight into the performance of the protocols and more effectively identify potential confounders in the prepared plasma and serum samples. To collect this information, the ISEV Blood EV Task Force created the Minimal Information for Blood EV research (MIBlood-EV), a tool to record and report information about pre-analytical protocols used for plasma and serum preparation as well as assays used to assess the quality of these preparations. This tool does not require modifications of established local pre-analytical protocols and can be easily implemented to enhance existing databases thereby enabling evidence-based optimization of pre-analytical protocols through meta-analysis. Taken together, insight into the quality of prepared plasma and serum samples will (i) improve the quality of biobanks for EV research, (ii) guide the exchange of plasma and serum samples between biobanks and laboratories, (iii) facilitate inter-laboratory comparative EV studies, and (iv) improve the peer review process.


Asunto(s)
Líquidos Corporales , Vesículas Extracelulares , Reproducibilidad de los Resultados , Plasma
6.
Eur J Cell Biol ; 102(2): 151311, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36963245

RESUMEN

Platelet extracellular vesicles (PEVs) generated upon platelet activation may play a role in inflammatory pathologies such as atherosclerosis. Oxidized low-density lipoprotein (oxLDL), a well-known contributor to atherogenesis, activates platelets and presensitizes them for activation by other agonists. We studied the effect of oxLDL on the secretion, composition, and inflammatory functions of PEVs using contemporary EV analytics. Platelets were activated by co-stimulation with thrombin (T) and collagen (C) ± oxLDL and characterized by high-resolution flow cytometry, nanoparticle tracking analysis, proximity extension assay, western blot, and electron microscopy. The effect of PEVs on macrophage differentiation and functionality was examined by analyzing macrophage surface markers, cytokine secretion, and transcriptome. OxLDL upregulated TC-induced formation of CD61+, P-selectin+ and phosphatidylserine+ PEVs. Blocking the scavenger receptor CD36 significantly suppressed the oxLDL+TC-induced PEV formation, and HDL caused a slight but detectable suppression. The inflammatory protein cargo differed between the PEVs from stimulated and unstimulated platelets. Both oxLDL+TC- and TC-induced PEVs enhanced macrophage HLA-DR and CD86 expression and decreased CD11c expression as well as secretion of several cytokines. Pathways related to cell cycle and regulation of gene expression, and immune system signaling were overrepresented in the differentially expressed genes between TC PEV -treated vs. control macrophages and oxLDL+TC PEV -treated vs. control macrophages, respectively. In conclusion, we speculate that oxLDL and activated platelets contribute to proatherogenic processes by increasing the number of PEVs that provide an adhesive and procoagulant surface, contain inflammatory mediators, and subtly finetune the macrophage gene expression.


Asunto(s)
Plaquetas , Vesículas Extracelulares , Plaquetas/metabolismo , Macrófagos/metabolismo , Lipoproteínas LDL/farmacología , Lipoproteínas LDL/metabolismo , Vesículas Extracelulares/metabolismo , Expresión Génica
7.
J Extracell Vesicles ; 11(10): e12273, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36257915

RESUMEN

Recent advances in cell biology research regarding extracellular vesicles have highlighted an increasing demand to obtain 3D cell culture-derived EVs, because they are considered to more accurately represent EVs obtained in vivo. However, there is still a grave need for efficient and tunable methodologies to isolate EVs from 3D cell cultures. Using nanofibrillar cellulose (NFC) scaffold as a 3D cell culture matrix, we developed a pipeline of two different approaches for EV isolation from cancer spheroids. A batch method was created for delivering high EV yield at the end of the culture period, and a harvesting method was created to enable time-dependent collection of EVs to combine EV profiling with spheroid development. Both these methods were easy to set up, quick to perform, and they provided a high EV yield. When compared to scaffold-free 3D spheroid cultures on ultra-low affinity plates, the NFC method resulted in similar EV production/cell, but the NFC method was scalable and easier to perform resulting in high EV yields. In summary, we introduce here an NFC-based, innovative pipeline for acquiring EVs from 3D cancer spheroids, which can be tailored to support the needs of variable EV research objectives.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Técnicas de Cultivo Tridimensional de Células , Celulosa
8.
Eur J Cell Biol ; 101(3): 151226, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35460959

RESUMEN

Cells release membrane-delimited particles into the environment. These particles are called "extracellular vesicles" (EVs), and EVs are present in fluids contacting cells, including body fluids and conditioned culture media. Because EVs change and contribute to health and disease, EVs have become a hot topic. From the thousands of papers now published on EVs annually, one easily gets the impression that EVs provide biomarkers for all diseases, and that EVs are carriers of all relevant biomolecules and are omnipotent therapeutics. At the same time, EVs are heterogeneous, elusive and difficult to study due to their physical properties and the complex composition of their environment. This overview addresses the current challenges encountered when working with EVs, and how we envision that most of these challenges will be overcome in the near future. Right now, an infrastructure is being developed to improve the reproducibility of EV measurement results. This infrastructure comprises expert task forces of the International Society of Extracellular Vesicles (ISEV) developing guidelines and recommendations, instrument calibration, standardized and transparent reporting, and education. Altogether, these developments will support the credibility of EV research by introducing robust reproducibility, which is a prerequisite for understanding their biological significance and biomarker potential.


Asunto(s)
Vesículas Extracelulares , Medios de Cultivo Condicionados , Reproducibilidad de los Resultados
9.
J Extracell Vesicles ; 11(1): e12151, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041249

RESUMEN

Previously thought to be nothing more than cellular debris, extracellular vesicles (EVs) are now known to mediate physiological and pathological functions throughout the body. We now understand more about their capacity to transfer nucleic acids and proteins between distant organs, the interaction of their surface proteins with target cells, and the role of vesicle-bound lipids in health and disease. To date, most observations have been made in reductionist cell culture systems, or as snapshots from patient cohorts. The heterogenous population of vesicles produced in vivo likely act in concert to mediate both beneficial and detrimental effects. EVs play crucial roles in both the pathogenesis of diseases, from cancer to neurodegenerative disease, as well as in the maintenance of system and organ homeostasis. This two-part review draws on the expertise of researchers working in the field of EV biology and aims to cover the functional role of EVs in physiology and pathology. Part I will outline the role of EVs in normal physiology.


Asunto(s)
Vesículas Extracelulares/metabolismo , Homeostasis/fisiología , Plaquetas/metabolismo , Fenómenos Fisiológicos Cardiovasculares , Micropartículas Derivadas de Células/metabolismo , Sistema Nervioso Central/fisiología , Exosomas/metabolismo , Microbioma Gastrointestinal/fisiología , Humanos , Inmunidad , Inflamación , Fenómenos Fisiológicos Musculoesqueléticos , Transducción de Señal , Sistema Urogenital/fisiología
10.
J Extracell Vesicles ; 11(1): e12190, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041301

RESUMEN

It is clear from Part I of this series that extracellular vesicles (EVs) play a critical role in maintaining the homeostasis of most, if not all, normal physiological systems. However, the majority of our knowledge about EV signalling has come from studying them in disease. Indeed, EVs have consistently been associated with propagating disease pathophysiology. The analysis of EVs in biofluids, obtained in the clinic, has been an essential of the work to improve our understanding of their role in disease. However, to interfere with EV signalling for therapeutic gain, a more fundamental understanding of the mechanisms by which they contribute to pathogenic processes is required. Only by discovering how the EV populations in different biofluids change-size, number, and physicochemical composition-in clinical samples, may we then begin to unravel their functional roles in translational models in vitro and in vivo, which can then feedback to the clinic. In Part II of this review series, the functional role of EVs in pathology and disease will be discussed, with a focus on in vivo evidence and their potential to be used as both biomarkers and points of therapeutic intervention.


Asunto(s)
Vesículas Extracelulares/metabolismo , Plaquetas/metabolismo , Plaquetas/patología , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patología , Micropartículas Derivadas de Células/metabolismo , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Exosomas/metabolismo , Microbioma Gastrointestinal , Humanos , Inmunidad , Inflamación , Sistema Musculoesquelético/metabolismo , Sistema Musculoesquelético/patología , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal , Sistema Urogenital/metabolismo , Sistema Urogenital/patología
11.
J Extracell Vesicles ; 10(12): e12158, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34651466

RESUMEN

Urinary extracellular vesicles (uEV) are a topical source of non-invasive biomarkers for health and diseases of the urogenital system. However, several challenges have become evident in the standardization of uEV pipelines from collection of urine to biomarker analysis. Here, we studied the effect of pre-analytical variables and developed means of quality control for uEV isolates to be used in transcriptomic biomarker research. We included urine samples from healthy controls and individuals with type 1 or type 2 diabetes and normo-, micro- or macroalbuminuria and isolated uEV by ultracentrifugation. We studied the effect of storage temperature (-20°C vs. -80°C), time (up to 4 years) and storage format (urine or isolated uEV) on quality of uEV by nanoparticle tracking analysis, electron microscopy, Western blotting and qPCR. Urinary EV RNA was compared in terms of quantity, quality, and by mRNA or miRNA sequencing. To study the stability of miRNA levels in samples isolated by different methods, we created and tested a list of miRNAs commonly enriched in uEV isolates. uEV and their transcriptome were preserved in urine or as isolated uEV even after long-term storage at -80°C. However, storage at -20°C degraded particularly the GC-rich part of the transcriptome and EV protein markers. Transcriptome was preserved in RNA samples extracted with and without DNAse, but read distributions still showed some differences in e.g. intergenic and intronic reads. MiRNAs commonly enriched in uEV isolates were stable and concordant between different EV isolation methods. Analysis of never frozen uEV helped to identify surface characteristics of particles by EM. In addition to uEV, qPCR assays demonstrated that uEV isolates commonly contained polyoma viruses. Based on our results, we present recommendations how to store and handle uEV isolates for transcriptomics studies that may help to expedite standardization of the EV biomarker field.


Asunto(s)
Biomarcadores/orina , Diabetes Mellitus/orina , Vesículas Extracelulares/metabolismo , Transcriptoma/genética , Adulto , Estudios de Casos y Controles , Humanos , Control de Calidad
12.
Cancers (Basel) ; 12(11)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33172086

RESUMEN

Cancer alters cell metabolism. How these changes are manifested in the metabolite cargo of cancer-derived extracellular vesicles (EVs) remains poorly understood. To explore these changes, EVs from prostate, cutaneous T-cell lymphoma (CTCL), colon cancer cell lines, and control EVs from their noncancerous counterparts were isolated by differential ultracentrifugation and analyzed by nanoparticle tracking analysis (NTA), electron microscopy (EM), Western blotting, and liquid chromatography-mass spectrometry (LC-MS). Although minor differences between the cancerous and non-cancerous cell-derived EVs were observed by NTA and Western blotting, the largest differences were detected in their metabolite cargo. Compared to EVs from noncancerous cells, cancer EVs contained elevated levels of soluble metabolites, e.g., amino acids and B vitamins. Two metabolites, proline and succinate, were elevated in the EV samples of all three cancer types. In addition, folate and creatinine were elevated in the EVs from prostate and CTCL cancer cell lines. In conclusion, we present the first evidence in vitro that the altered metabolism of different cancer cells is reflected in common metabolite changes in their EVs. These results warrant further studies on the significance and usability of this metabolic fingerprint in cancer.

13.
Biosens Bioelectron ; 168: 112510, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32877783

RESUMEN

Extracellular vesicles (EVs) have the ability to function as molecular vehicles and could therefore be harnessed to deliver drugs to target cells in diseases such as cancer. The composition of EVs determines their function as well as their interactions with cells, which consequently affects the cell uptake efficacy of EVs. In this study, we present two novel label-free approaches for studying EVs; characterization of EV composition by time-gated surface-enhanced Raman spectroscopy (TG-SERS) and monitoring the kinetics and amount of cellular uptake of EVs by surface plasmon resonance (SPR) in real-time. Using these methods, we characterized the most abundant EVs of human blood, red blood cell (RBC)- and platelet (PLT)-derived EVs and studied their interactions with prostate cancer cells. Complementary studies were performed with nanoparticle tracking analysis for concentration and size determinations of EVs, zeta potential measurements for surface charge analysis, and fluorophore-based confocal imaging and flow cytometry to confirm EV uptake. Our results revealed distinct biochemical features between the studied EVs and demonstrated that PLT-derived EVs were more efficiently internalized by PC-3 cells than RBC-derived EVs. The two novel label-free techniques introduced in this study were found to efficiently complement conventional techniques and paves the way for further use of TG-SERS and SPR in EV studies.


Asunto(s)
Técnicas Biosensibles , Vesículas Extracelulares , Nanopartículas , Humanos , Masculino , Espectrometría Raman , Resonancia por Plasmón de Superficie
14.
PLoS One ; 15(8): e0236439, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32813744

RESUMEN

Extracellular vesicles (EVs) in human blood are a potential source of biomarkers. To which extent anticoagulation affects their concentration, cellular origin and protein composition is largely unexplored. To study this, blood from 23 healthy subjects was collected in acid citrate dextrose (ACD), citrate or EDTA, or without anticoagulation to obtain serum. EVs were isolated by ultracentrifugation or by size-exclusion chromatography (SEC) for fluorescence-SEC. EVs were analyzed by micro flow cytometry, NTA, TEM, Western blot, and protein mass spectrometry. The plasma EV concentration was unaffected by anticoagulants, but serum contained more platelet EVs. The protein composition of plasma EVs differed between anticoagulants, and between plasma and serum. Comparison to other studies further revealed that the shared EV protein composition resembles the "protein corona" of synthetic nanoparticles incubated in plasma or serum. In conclusion, we have validated a higher concentration of platelet EVs in serum than plasma by contemporary EV methods. Anticoagulation should be carefully described (i) to enable study comparison, (ii) to utilize available sample cohorts, and (iii) when preparing/selecting biobank samples. Further, the similarity of the EV protein corona and that of nanoparticles implicates that EVs carry both intravesicular and extravesicular cargo, which will expand their applicability for biomarker discovery.


Asunto(s)
Biomarcadores/sangre , Proteínas Sanguíneas/aislamiento & purificación , Vesículas Extracelulares/genética , Proteoma/genética , Adulto , Plaquetas/química , Proteínas Sanguíneas/genética , Femenino , Citometría de Flujo/métodos , Voluntarios Sanos , Humanos , Masculino , Espectrometría de Masas/métodos , Persona de Mediana Edad
15.
J Extracell Vesicles ; 9(1): 1747206, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32363012

RESUMEN

Extracellular vesicles (EVs) have been showcased as auspicious candidates for delivering therapeutic cargo, including oncolytic viruses for cancer treatment. Delivery of oncolytic viruses in EVs could provide considerable advantages, hiding the viruses from the immune system and providing alternative entry pathways into cancer cells. Here we describe the formation and viral cargo of EVs secreted by cancer cells infected with an oncolytic adenovirus (IEVs, infected cell-derived EVs) as a function of time after infection. IEVs were secreted already before the lytic release of virions and their structure resembled normally secreted EVs, suggesting that they were not just apoptotic fragments of infected cells. IEVs were able to carry the viral genome and induce infection in other cancer cells. As such, the role of EVs in the life cycle of adenoviruses may be an important part of a successful infection and may also be harnessed for cancer- and gene therapy.

16.
Platelets ; 31(1): 26-32, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30585111

RESUMEN

Activated platelets contribute to thrombosis and inflammation by the release of extracellular vesicles (EVs) exposing P-selectin, phosphatidylserine (PS) and fibrinogen. P2Y12 receptor antagonists are routinely administered to inhibit platelet activation in patients after acute myocardial infarction (AMI), being a combined antithrombotic and anti-inflammatory therapy. The more potent P2Y12 antagonist ticagrelor improves cardiovascular outcome in patients after AMI compared to the less potent clopidogrel, suggesting that greater inhibition of platelet aggregation is associated with better prognosis. The effect of ticagrelor and clopidogrel on the release of EVs from platelets and other P2Y12-exposing cells is unknown. This study compares the effects of ticagrelor and clopidogrel on (1) the concentrations of EVs from activated platelets (primary end point), (2) the concentrations of EVs exposing fibrinogen, exposing PS, from leukocytes and from endothelial cells (secondary end points) and (3) the procoagulant activity of plasma EVs (tertiary end points) in 60 consecutive AMI patients. After the percutaneous coronary intervention, patients will be randomized to antiplatelet therapy with ticagrelor (study group) or clopidogrel (control group). Blood will be collected from patients at randomization, 48 hours after randomization and 6 months following the index hospitalization. In addition, 30 age- and gender-matched healthy volunteers will be enrolled in the study to investigate the physiological concentrations and procoagulant activity of EVs using recently standardized protocols and EV-dedicated flow cytometry. Concentrations of EVs will be determined by flow cytometry. Procoagulant activity of EVs will be determined by fibrin generation test. The compliance and response to antiplatelet therapy will be assessed by impedance aggregometry. We expect that plasma from patients treated with ticagrelor (1) contains lower concentrations of EVs from activated platelets, exposing fibrinogen, exposing PS, from leukocytes and from endothelial cells and (2) has lower procoagulant activity, when compared to patients treated with clopidogrel. Antiplatelet therapy effect on EVs may identify a new mechanism of action of ticagrelor, as well as create a basis for future studies to investigate whether lower EV concentrations are associated with improved clinical outcomes in patients treated with P2Y12 antagonists.


Asunto(s)
Protocolos Clínicos , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/metabolismo , Infarto del Miocardio/complicaciones , Infarto del Miocardio/metabolismo , Inhibidores de Agregación Plaquetaria/administración & dosificación , Trombosis/etiología , Trombosis/prevención & control , Biomarcadores , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Femenino , Humanos , Masculino , Infarto del Miocardio/terapia , Intervención Coronaria Percutánea , Activación Plaquetaria/efectos de los fármacos , Antagonistas del Receptor Purinérgico P2Y/administración & dosificación
17.
Cell Mol Life Sci ; 77(20): 4093-4115, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31820036

RESUMEN

Intercellular communication is fundamental to the survival and maintenance of all multicellular systems, whereas dysregulation of communication pathways can drive cancer progression. Extracellular vesicles (EVs) are mediators of cell-to-cell communication that regulate a variety of cellular processes involved in tumor progression. Overexpression of a specific plasma membrane enzyme, hyaluronan synthase 3 (HAS3), is one of the factors that can induce EV shedding. HAS3, and particularly its product hyaluronan (HA), are carried by EVs and are known to be associated with the tumorigenic properties of cancer cells. To elucidate the specific effects of cancerous, HAS3-induced EVs on target cells, normal human keratinocytes and melanoma cells were treated with EVs derived from GFP-HAS3 expressing metastatic melanoma cells. We found that the HA receptor CD44 participated in the regulation of EV binding to target cells. Furthermore, GFP-HAS3-positive EVs induced HA secretion, proliferation and invasion of target cells. Our results suggest that HAS3-EVs contains increased quantities of IHH, which activates the target cell hedgehog signaling cascade and leads to the activation of c-Myc and regulation of claspin expression. This signaling of IHH in HAS3-EVs resulted in increased cell proliferation. Claspin immunostaining correlated with HA content in human cutaneous melanocytic lesions, supporting our in vitro findings and suggesting a reciprocal regulation between claspin expression and HA synthesis. This study shows for the first time that EVs originating from HAS3 overexpressing cells carry mitogenic signals that induce proliferation and epithelial-to-mesenchymal transition in target cells. The study also identifies a novel feedback regulation between the hedgehog signaling pathway and HA metabolism in melanoma, mediated by EVs carrying HA and IHH.


Asunto(s)
Vesículas Extracelulares/genética , Proteínas Hedgehog/genética , Hialuronano Sintasas/genética , Melanoma/genética , Proteínas Proto-Oncogénicas c-myc/genética , Regulación hacia Arriba/genética , Línea Celular , Línea Celular Tumoral , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Humanos , Receptores de Hialuranos/genética , Transducción de Señal/genética
18.
J Thromb Haemost ; 18(3): 609-623, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31833175

RESUMEN

BACKGROUND: Platelet P2Y12 antagonist ticagrelor reduces mortality after acute myocardial infarction (AMI) compared to clopidogrel, but the underlying mechanism is unknown. Because activated platelets, leukocytes, and endothelial cells release proinflammatory and prothrombotic extracellular vesicles (EVs), we hypothesized that the release of EVs is more efficiently inhibited by ticagrelor compared to clopidogrel. OBJECTIVES: We compared EV concentrations and EV procoagulant activity in plasma of patients after AMI treated with ticagrelor or clopidogrel. METHODS: After percutaneous coronary intervention, 60 patients with first AMI were randomized to ticagrelor or clopidogrel. Flow cytometry was used to determine concentrations of EVs from activated platelets (CD61+ , CD62p+ ), fibrinogen+ , phosphatidylserine (PS+ ), leukocytes (CD45+ ), endothelial cells (CD31+ , 146+ ), and erythrocytes (CD235a+ ) in plasma at randomization, after 72 hours and 6 months of treatment. A fibrin generation test was used to determine EV procoagulant activity. RESULTS: Concentrations of platelet, fibrinogen+ , PS+ , leukocyte, and erythrocyte EVs increased 6 months after AMI compared to the acute phase of AMI (P ≤ .03). Concentrations of platelet EVs were lower on ticagrelor compared to clopidogrel after 6 months (P = .03). Concentrations of fibrinogen+ , PS+ , and leukocyte EVs were lower on ticagrelor compared to clopidogrel both after 72 hours and 6 months (P ≤ .03). Concentrations of endothelial EVs and EV procoagulant activity did not differ between patient groups and over time (P ≥ .17). CONCLUSIONS: Ticagrelor attenuates the increase of EV concentrations in plasma after acute myocardial infarction compared to clopidogrel. The ongoing release of EVs despite antiplatelet therapy might explain recurrent thrombotic events after AMI and worse clinical outcomes on clopidogrel compared to ticagrelor.


Asunto(s)
Vesículas Extracelulares , Infarto del Miocardio , Intervención Coronaria Percutánea , Clopidogrel , Células Endoteliales , Humanos , Infarto del Miocardio/tratamiento farmacológico , Inhibidores de Agregación Plaquetaria/uso terapéutico , Ticagrelor , Resultado del Tratamiento
19.
Transfus Med Hemother ; 46(4): 267-275, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31700509

RESUMEN

Novel analytical measures are needed to accurately monitor the properties of platelet concentrates (PCs). Since activated platelets produce platelet-derived extracellular vesicles (EVs), analyzing EVs of PCs may provide additional information about the condition of platelets. The prospect of using EVs as an auxiliary measure of platelet activation state was investigated by examining the effect of platelet additive solutions (PASs) on EV formation and platelet activation during PC storage. The time-dependent activation of platelets in PCs with PAS-B or with the further developed PAS-E was compared by measuring the exposure of CD62P by flow cytometry and the content of soluble glycoprotein V (sGPV) of PCs by an immunoassay. Changes in the concentration and size distribution of EVs were determined using nanoparticle tracking analysis. A time-dependent increase in platelet activation in PCs was demonstrated by increased CD62P ex-posure, sGPV content, and EV concentration. Using these strongly correlating parameters, PAS-B platelets were shown to be more activated compared to PAS-E platelets. Since the EV concentration correlated well with the established platelet activation markers CD62P and sGPV, it could potentially be used as a complementary parameter for platelet activation for PCs. More detailed characterization of the resulting EVs could help to understand how the PC components contribute the functional effects of transfused PCs.

20.
Metabolites ; 9(11)2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31718094

RESUMEN

Cell-secreted extracellular vesicles (EVs) have rapidly gained prominence as sources of biomarkers for non-invasive biopsies, owing to their ubiquity across human biofluids and physiological stability. There are many characterisation studies directed towards their protein, nucleic acid, lipid and glycan content, but more recently the metabolomic analysis of EV content has also gained traction. Several EV metabolite biomarker candidates have been identified across a range of diseases, including liver disease and cancers of the prostate and pancreas. Beyond clinical applications, metabolomics has also elucidated possible mechanisms of action underlying EV function, such as the arginase-mediated relaxation of pulmonary arteries or the delivery of nutrients to tumours by vesicles. However, whilst the value of EV metabolomics is clear, there are challenges inherent to working with these entities-particularly in relation to sample production and preparation. The biomolecular composition of EVs is known to change drastically depending on the isolation method used, and recent evidence has demonstrated that changes in cell culture systems impact upon the metabolome of the resulting EVs. This review aims to collect recent advances in the EV metabolomics field whilst also introducing researchers interested in this area to practical pitfalls in applying metabolomics to EV studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA