Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(35): e2303814120, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37603754

RESUMEN

Neutrophil recruitment to sites of infection and inflammation is an essential process in the early innate immune response. Upon activation, a subset of neutrophils rapidly assembles the multiprotein complex known as the NLRP3 inflammasome. The NLRP3 inflammasome forms at the microtubule organizing center, which promotes the formation of interleukin (IL)-1ß and IL-18, essential cytokines in the immune response. We recently showed that mice deficient in NLRP3 (NLRP3-/-) have reduced neutrophil recruitment to the peritoneum in a model of thioglycolate-induced peritonitis. Here, we tested the hypothesis that this diminished recruitment could be, in part, the result of defects in neutrophil chemotaxis. We find that NLRP3-/- neutrophils show loss of cell polarization, as well as reduced directionality and velocity of migration toward increasing concentrations of leukotriene B4 (LTB4) in a chemotaxis assay in vitro, which was confirmed through intravital microscopy of neutrophil migration toward a laser-induced burn injury of the liver. Furthermore, pharmacologically blocking NLRP3 inflammasome assembly with MCC950 in vitro reduced directionality but preserved nondirectional movement, indicating that inflammasome assembly is specifically required for polarization and directional chemotaxis, but not cell motility per se. In support of this, pharmacological breakdown of the microtubule cytoskeleton via nocodazole treatment induced cell polarization and restored nondirectional cell migration in NLRP3-deficient neutrophils in the LTB4 gradient. Therefore, NLRP3 inflammasome assembly is required for establishment of cell polarity to guide the directional chemotactic migration of neutrophils.


Asunto(s)
Quimiotaxis , Leucotrieno B4 , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Ratones , Inflamasomas , Leucotrieno B4/metabolismo , Neutrófilos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
2.
J Exp Med ; 218(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33231615

RESUMEN

Severe cases of COVID-19 are characterized by a strong inflammatory process that may ultimately lead to organ failure and patient death. The NLRP3 inflammasome is a molecular platform that promotes inflammation via cleavage and activation of key inflammatory molecules including active caspase-1 (Casp1p20), IL-1ß, and IL-18. Although participation of the inflammasome in COVID-19 has been highly speculated, the inflammasome activation and participation in the outcome of the disease are unknown. Here we demonstrate that the NLRP3 inflammasome is activated in response to SARS-CoV-2 infection and is active in COVID-19 patients. Studying moderate and severe COVID-19 patients, we found active NLRP3 inflammasome in PBMCs and tissues of postmortem patients upon autopsy. Inflammasome-derived products such as Casp1p20 and IL-18 in the sera correlated with the markers of COVID-19 severity, including IL-6 and LDH. Moreover, higher levels of IL-18 and Casp1p20 are associated with disease severity and poor clinical outcome. Our results suggest that inflammasomes participate in the pathophysiology of the disease, indicating that these platforms might be a marker of disease severity and a potential therapeutic target for COVID-19.


Asunto(s)
COVID-19/patología , COVID-19/virología , Inflamasomas/metabolismo , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad , Apoptosis , Comorbilidad , Citocinas/biosíntesis , Humanos , Pulmón/patología , Monocitos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Cambios Post Mortem , Resultado del Tratamiento
3.
Eur J Pharmacol ; 740: 192-9, 2014 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-25046838

RESUMEN

Methyl cinnamate (MC) is a safe flavoring agent useful to food industry. Although chemically analog to tyrosine kinase inhibitors, there is little information regarding its biological actions. Here, we aimed at assessing the MC effects on gastrointestinal contractility and the putative involvement of tyrosine kinase in the mediation of these effects. Isometric contractions were recorded in rat isolated strips from stomach, duodenum and colon segments. In gastric strips, MC (3-3000 µM) showed antispasmodic effects against carbachol-induced contractions, which remained unchanged by either l-NAME or tetraethylammonium pretreatment and occurred with potency similar to that obtained against contractions evoked by potassium or U-46619. In colon strips, MC was four times more potent than in gastric ones. MC and the positive control genistein inhibited phasic contractions induced by acetylcholine in Ca2+-free medium, an effect fully prevented by sodium orthovanadate. Both MC and genistein decreased the spontaneous contractions of duodenal strips and shortened the time necessary for gastric fundic tissues to reach 50% of maximal relaxation. In freshly isolated colon myocytes, MC decreased the basal levels of cytoplasmic Ca2+, but not the potassium-elicited cytoplasmic Ca2+ elevation. Colon strips obtained from rats subjected to intracolonic acetic acid instillation showed reduced contractility to potassium, which was partially recovered in MC-treated rats. Inhibitory effect of nifedipine against cholinergic contractions, blunted in acetic acid-induced colitis, was also recovered in MC-treated rats. In conclusion, MC inhibited the gastrointestinal contractility with a probable involvement of tyrosine kinase pathways. In vivo, it was effective to prevent the deleterious effects of colitis resulting from acetic acid injury.


Asunto(s)
Cinamatos/farmacología , Colon/efectos de los fármacos , Duodeno/efectos de los fármacos , Aromatizantes/farmacología , Parasimpatolíticos/farmacología , Estómago/efectos de los fármacos , Ácido Acético , Animales , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Carbacol , Cinamatos/uso terapéutico , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/fisiopatología , Colon/fisiología , Duodeno/fisiología , Aromatizantes/uso terapéutico , Técnicas In Vitro , Masculino , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Nifedipino/farmacología , Parasimpatolíticos/uso terapéutico , Cloruro de Potasio/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/fisiología , Ratas Wistar , Estómago/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...