Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Lancet Digit Health ; 6(8): e570-e579, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39059889

RESUMEN

BACKGROUND: Detecting and foreseeing pathogen dispersion is crucial in preventing widespread disease transmission. Human mobility is a fundamental issue in human transmission of infectious agents. Through a mobility data-driven approach, we aimed to identify municipalities in Brazil that could comprise an advanced sentinel network, allowing for early detection of circulating pathogens and their associated transmission routes. METHODS: In this modelling and validation study, we compiled a comprehensive dataset on intercity mobility spanning air, road, and waterway transport from the Brazilian Institute of Geography and Statistics (2016 data), National Transport Confederation (2022), and National Civil Aviation Agency (2017-23). We constructed a graph-based representation of Brazil's mobility network. The Ford-Fulkerson algorithm was used to rank the 5570 Brazilian cities according to their suitability as sentinel locations, allowing us to predict the most suitable locations for early detection and to track the most likely trajectory of a newly emerged pathogen. We also obtained SARS-CoV-2 genetic data from Brazilian municipalities during the early stage (Feb 25-April 30, 2020) of the virus's introduction and the gamma (P.1) variant emergence in Manaus (Jan 6-March 1, 2021), for the purposes of model validation. FINDINGS: We found that flights alone transported 79·9 million (95% CI 58·3-101·4 million) passengers annually within Brazil during 2017-22, with seasonal peaks occurring in late spring and summer, and road and river networks had a maximum capacity of 78·3 million passengers weekly in 2016. By analysing the 7 746 479 most probable paths originating from source nodes, we found that 3857 cities fully cover the mobility pattern of all 5570 cities in Brazil, 557 (10·0%) of which cover 6 313 380 (81·5%) of the mobility patterns in our study. By strategically incorporating mobility patterns into Brazil's existing influenza-like illness surveillance network (ie, by switching the location of 111 of 199 sentinel sites to different municipalities), our model predicted that mobility coverage would have a 33·6% improvement from 4 059 155 (52·4%) mobility patterns to 5 422 535 (70·0%) without expanding the number of sentinel sites. Our findings are validated with genomic data collected during the SARS-CoV-2 pandemic period. Our model accurately mapped 22 (51%) of 43 clade 1-affected cities and 28 (60%) of 47 clade 2-affected cities spread from São Paulo city, and 20 (49%) of 41 clade 1-affected cities and 28 (58%) of 48 clade 2-affected cities spread from Rio de Janeiro city, Feb 25-April 30, 2020. Additionally, 224 (73%) of the 307 suggested early-detection locations for pathogens emerging in Manaus corresponded with the first cities affected by the transmission of the gamma variant, Jan 6-16, 2021. INTERPRETATION: By providing essential clues for effective pathogen surveillance, our results have the potential to inform public health policy and improve future pandemic response efforts. Our results unlock the potential of designing country-wide clinical sample collection networks with mobility data-informed approaches, an innovative practice that can improve current surveillance systems. FUNDING: Rockefeller Foundation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Brasil/epidemiología , COVID-19/transmisión , COVID-19/epidemiología , Ciudades , Transportes
2.
Environ Sci Pollut Res Int ; 30(1): 1737-1760, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35922592

RESUMEN

Air quality models are essential tools to meet the United Nations Sustainable Development Goals (UN-SDG) because they are effective in guiding public policies for the management of air pollutant emissions and their impacts on the environment and human health. Despite its importance, Brazil still lacks a guide for choosing and setting air quality models for regulatory purposes. Based on this, the current research aims to assess the combined WRF/CALMET/CALPUFF models for representing SO2 dispersion over non-homogeneous regions as a regulatory model for policies in Brazilian Metropolitan Regions to satisfy the UN-SDG. The combined system was applied to the Rio de Janeiro Metropolitan Area (RJMA), which is known for its physiographic complexity. In the first step, the WRF model was evaluated against surface-observed data. The local circulation was underestimated, while the prevailing observational winds were well represented. In the second step, it was verified that all CALMET three meteorological configurations performed better for the most frequent wind speed classes so that the largest SO2 concentrations errors occurred during light winds. Among the meteorological settings in WRF/CALMET/CALPUFF, the joined use of observed and modeled meteorological data yielded the best results for the dispersion of pollutants. This result emphasizes the relevance of meteorological data composition in complex regions with unsatisfactory monitoring given the inherent limitations of prognostic models and the excessive extrapolation of observed data that can generate distortions of reality. This research concludes with the proposal of the WRF/CALMET/CALPUFF air quality regulatory system as a supporting tool for policies in the Brazilian Metropolitan Regions in the framework of the UN-SDG, particularly in non-homogeneous regions where steady-state Gaussian models are not applicable.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Brasil , Desarrollo Sostenible , Monitoreo del Ambiente/métodos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Modelos Teóricos
3.
Environ Monit Assess ; 194(8): 557, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35781134

RESUMEN

Forest fires have global, regional, and local socioeconomic and environmental consequences, with negative effects on ecosystem services, air quality, population health, and other relevant aspects, emphasizing their significance in the context of the United Nations Sustainable Development Goals. The study identified areas in the Rio de Janeiro State (RJS) with varying degrees of susceptibility to fire focis using remote sensing data derived from topographic, anthropogenic, meteorological, and hydrological factors based on seasonality and integrated into geographic information systems. The analytical hierarchy process was used as a method of integration and normalized hierarchy of variables, generating susceptibility maps in the annual, summer, and winter periods in the RJS's hydrographic regions (HR), with the application of the associated chi-square test to records of fire focis from the AQUA satellite, period 2003 to 2017, without methodological variation for data acquisition, whose susceptibility was classified as very low to very high. The results show that the years with the most fire foci in the adopted time series are 2007 and 2014, with a peak in September and a fall from October onwards. According to the susceptibility map, 9% of the RJS is highly susceptible during the annual period, with HR-IX being especially vulnerable. In the summer, 0.2% of RJS is extremely vulnerable, while 32% is highly vulnerable in the winter, with 6402 km2 of HR-IX areas being extremely vulnerable. A statistical correlation was discovered between the chi-square test and susceptible areas. This work contributes as a decision-making tool in fire planning and emergency response, with the potential to assist control bodies (city halls, civil defense, environmental protection bodies, health systems) in the local and regional context in the assessment, analysis, and management of these phenomena.


Asunto(s)
Incendios , Incendios Forestales , Brasil , Ecosistema , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...