Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Reprod Fertil Dev ; 362024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39133816

RESUMEN

Context The overproduction of reactive oxygen species (ROS) during in vitro culture of ovarian tissues impairs follicular development and survival. Aims To evaluate the effects of punicalagin on the development and survival of primordial follicles, stromal cell and collagen fibres, as well as on the levels of mRNA for nuclear factor erythroid 2-related factor 2 (NRF2 ), superoxide dismutase 1 (SOD1 ), catalase (CAT ), glutathione peroxidase 1 (GPX1 ) and perirredoxin 6 (PRDX6 ), and activity of antioxidant enzymes in cultured bovine ovarian tissues. Methods Bovine ovarian cortical tissues were cultured for 6days in α-MEM+ alone or with 1.0, 10.0, or 100.0µM punicalagin at 38.5°C with 5% CO2 . Follicle morphology and growth, stromal cell density, and collagen fibres were evaluated by classical histology, while the expression of mRNA was evaluated by real-time PCR. The activity of enzymes was analysed by the Bradford method. Key results Punicalagin improved follicle survival and development, reduced mRNA expression for SOD1 and CAT , but did not influence stromal cells or collagen fibres. Punicalagin (10.0µM) increased the levels of thiol and activity of SOD1, CAT , and GPX1 enzymes. Conclusions Punicalagin (10.0µM) promotes follicle survival and development and activates SOD1, CAT , and GPX1 enzymes in bovine ovarian tissues. Implications Punicalagin improves follicle development and survival in cultured ovarian tissues.


Asunto(s)
Catalasa , Glutatión Peroxidasa GPX1 , Glutatión Peroxidasa , Taninos Hidrolizables , Folículo Ovárico , Animales , Femenino , Bovinos , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/metabolismo , Folículo Ovárico/enzimología , Taninos Hidrolizables/farmacología , Glutatión Peroxidasa/metabolismo , Glutatión Peroxidasa/genética , Catalasa/metabolismo , Catalasa/genética , Ovario/efectos de los fármacos , Ovario/enzimología , Ovario/metabolismo , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa-1/genética , Antioxidantes/farmacología , Antioxidantes/metabolismo , Técnicas de Cultivo de Tejidos , Superóxido Dismutasa/metabolismo
2.
J Pharm Pharmacol ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016304

RESUMEN

OBJECTIVES: This study aims to evaluate the effects of Croton grewioides essential oil (CGEO) and anethole on follicle survival, growth, and oxidative stress in cultured bovine ovarian tissues. METHODS: Ovarian tissues were cultured for 6 days in a medium supplemented with different concentrations (1, 10, 100, or 1000 µg mL-1) of CGEO or anethole and then, follicular survival and growth, collagen content, and stromal cell density in ovarian tissues cultured in vitro were evaluated by histology. The mRNA levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase 1 (GPX1), peroxirredoxin 6 (PRDX6), and nuclear factor erythroid 2-related factor 2 (NRF2) were evaluated by real-time PCR. The activity of SOD, CAT, glutathione peroxidase (GPx), and thiol concentrations were investigated. KEY FINDINGS: Ovarian tissues cultured with 1 µg mL-1 CGEO or anethole had a higher percentage of healthy follicles than those cultured in a control medium (P < .05). The 1 µg mL-1 CGEO also increased the number of stromal cells, collagen fibers, and thiol levels. Anethole (1 µg mL-1) increased CAT activity and reduced that of GPx. The activity of SOD was reduced by CGEO. In contrast, 1 µg mL-1 anethole reduced mRNA for CAT, PRDX1, and NRF2 (P < .05). In addition, 1 µg mL-1 CGEO reduced mRNA for CAT, PRDX6, and GPx1 (P < .05). CONCLUSIONS: The presence of 1 µg mL-1 anethole or CGEO in a culture medium promotes follicle survival and regulates oxidative stress and the expression of mRNA and activity of antioxidant enzymes in cultured bovine ovarian tissues.

3.
Anim Reprod Sci ; 266: 107514, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38824841

RESUMEN

This study aims to investigate the influence of thymol on primordial follicle growth and survival, as well as on collagen fibers and stromal cells density in bovine ovarian tissues cultured in vitro. The activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), the thiol levels and the expression of mRNAs for SOD1, CAT, periredoxin 6 (PRDX6) and GPX1 were also investigated. Ovarian cortical tissues were cultured in α-MEM+ alone or with thymol (400, 800, 1600 or 3200 µg/mL) for six days. Before and after culture, the tissues were processed for histological analysis to evaluate follicular activation, growth, morphology, ovarian stromal cell density and collagen fibers. The levels of mRNA for SOD1, CAT, GPX1 and PRDX6 were evaluated by real-time PCR. The results show that tissues cultured with thymol (400 and 800 µg/mL) had increased percentages of normal follicles, when compared to tissues cultured in other treatments. At concentrations of 400 and 800 µg/mL, thymol maintained the rate of normal follicles similar to the uncultured control. In addition, 400 µg/mL thymol increased follicle activation, collagen fibers and stromal cell density of when compared to tissues cultured in control medium. The presence of 800 µg/mL thymol in culture medium increased CAT activity, while 400 or 800 µg/mL thymol reduced mRNA levels for SOD1, CAT and PRDX6, but did not alter GPX1 expression. In conclusion, 400 µg/mL thymol increases primordial follicle activation, preserves stromal cells, collagen fibers, and down-regulates expression of mRNA for SOD1, CAT and PRDX6 in cultured bovine ovarian tissues.


Asunto(s)
Catalasa , Colágeno , Folículo Ovárico , ARN Mensajero , Células del Estroma , Timol , Animales , Femenino , Bovinos , Timol/farmacología , ARN Mensajero/metabolismo , ARN Mensajero/genética , Folículo Ovárico/efectos de los fármacos , Catalasa/metabolismo , Catalasa/genética , Colágeno/metabolismo , Colágeno/genética , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Peroxiredoxina VI/genética , Peroxiredoxina VI/metabolismo , Ovario/efectos de los fármacos , Ovario/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/genética , Técnicas de Cultivo de Tejidos , Regulación de la Expresión Génica/efectos de los fármacos
4.
Reprod Domest Anim ; 59(3): e14543, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38459831

RESUMEN

This study aims to investigate the effects of melatonin on follicular growth, viability and ultrastructure, as well as on the levels of mRNA for antioxidant enzymes, reactive oxygen species (ROS) and meiotic progression in oocytes from in vitro cultured bovine early antral follicles. To this end, isolated early antral follicles (500-600 µm) were cultured in TCM-199+ alone or supplemented with 10-6 , 10-7 or 10-8 M melatonin at 38.5°C with 5% CO2 for 8 days. Follicle diameters were evaluated at days 0, 4 and 8 of culture. At the end of culture, ultrastructure, chromatin configuration, viability (calcein-AM and ethidium homodimer-1 staining), and the levels of ROS and mRNA for catalase (CAT), superoxide dismutase (SOD) and peroxiredoxin 6 (PRDX6) and glutathione peroxidase (GPx) were investigated in oocyte-granulosa cell complexes (OGCs). The results showed that early antral follicles cultured with 10-6 and 10-8 M melatonin had a progressive and significant increase in their diameters throughout the culture period (p < .05). Additionally, oocytes from follicles cultured with 10-7 or 10-8 M melatonin had increased fluorescence for calcein-AM, while those cultured with 10-6 or 10-7 M had reduced fluorescence for ethidium homodimer-1. Different from follicles cultured in other treatments, those cultured with 10-8 M melatonin had well-preserved ultrastructure of oocyte and granulosa cells. Melatonin, however, did not influence the levels of ROS, the mitochondrial activity, oocyte meiotic resumption and expression mRNA for SOD, CAT, GPX1 and PRDX6. In conclusion, the presence of 10-8 M melatonin in culture medium improves viability and preserves the ultrastructure of oocyte and granulosa cells of early antral follicles cultured in vitro.


Asunto(s)
Fluoresceínas , Melatonina , Femenino , Animales , Bovinos , Melatonina/farmacología , Melatonina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oocitos , Superóxido Dismutasa , ARN Mensajero/metabolismo
5.
Anim Reprod Sci ; 257: 107327, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37696223

RESUMEN

This study investigated the effects of cyclic adenosine monophosphate modulating during cumulus-oocyte complexes (COCs) pre-maturation and the role of melatonin on in vitro maturation (IVM) of bovine COCs. In experiment one, COCs were pre-matured for 8 h in control medium or with 3-isobutyl-1-methylxanthine (IBMX) and forskolin, IBMX and C-type natriuretic peptide, c-type natriuretic peptide and forskolin or IBMX, forskolin and c-type natriuretic peptide. Then, meiotic progression was evaluated. In experiment two, COCs were pre-matured, followed by IVM in control medium alone or with 10-6, 10-7 or 10-8 M melatonin. After IVM, chromatin configuration, transzonal projections (TZPs), reactive oxygen species, mitochondrial distribution, ultrastructure and mRNA expression for antioxidant enzymes were evaluated. In experiment 1, COCs pre-matured with both C-type natriuretic peptide and forskolin or C-type natriuretic peptide, forskolin and IBMX had lower meiotic resumption rate when compared to control. Considering that IBMX had not an additional effect to potentiate inhibition of meiotic resumption, a combination of C-type natriuretic peptide and forskolin was chosen. In experiment 2, COCs matured with 10-8 M melatonin had greater rates of meiotic resumption when compared to the other treatments (P < 0.05). The COCs matured with 10-7 or 10-8 M melatonin had greater mitochondrial activity (P < 0.05), while those matured with 10-6 or 10-8 M of melatonin had greater levels of TZPs. Ultrastructure of oocyte and cumulus cells after IVM with melatonin was relatively well preserved. COCs matured with 10-8 M melatonin increased mRNA expression for superoxide dismutase (SOD) and catalase (CAT) (P < 0.05), when compared to non-cultured and pre-matured COCs, respectively. In conclusion, bovine COC pre-maturation with C-type natriuretic peptide and forskolin, followed by IVM with 10-8 M melatonin improves meiotic resumption rates, TZPs, mitochondrial distribution and mRNA expression for SOD and CAT.


Asunto(s)
Melatonina , Animales , Bovinos , Femenino , Melatonina/farmacología , Melatonina/metabolismo , 1-Metil-3-Isobutilxantina/farmacología , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Péptido Natriurético Tipo-C/farmacología , Colforsina/farmacología , Colforsina/metabolismo , Oocitos/fisiología , AMP Cíclico/metabolismo , ARN Mensajero/metabolismo , Superóxido Dismutasa/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/farmacología , Células del Cúmulo
6.
Anim Reprod Sci ; 249: 107186, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36638648

RESUMEN

In vitro follicle growth and oocyte maturation still has a series of limitations, since not all oocytes matured in vitro have the potential to develop in viable embryos. One of the factors associated with low oocyte quality is the generation of reactive oxygen species (ROS) during in vitro culture. Therefore, this review aims to discuss the role of non-enzymatic antioxidants in the control of oxidative stress during in vitro follicular growth, oocyte maturation and embryonic development. A wide variety of non-enzymatic antioxidants (melatonin, resveratrol, L-ascorbic acid, L-carnitine, N-acetyl-cysteine, cysteamine, quercetin, nobiletin, lycopene, acteoside, mogroside V, phycocyanin and laminarin) have been used to supplement culture media. Some of them, like N-acetyl-cysteine, cysteamine, nobiletin and quercetin act by increasing the levels of glutathione (GSH), while melatonin and resveratrol increase the expression of antioxidant enzymes and minimize oocyte oxidative stress. L-ascorbic acid reduces free radicals and reactive oxygen species. Lycopene positively regulates the expression of many antioxidant genes. Additionally, L-carnitine protects DNA against ROS-induced damage, while acteoside and laminarin reduces the expression of proapoptotic genes. Mogrosides increases mitochondrial function and reduces intracellular ROS levels, phycocyanin reduces lipid peroxidation, and lycopene neutralizes the adverse effects of ROS. Thus, it is very important to know their mechanisms of actions, because the combination of two or more antioxidants with different activities has great potential to improve in vitro culture systems.


Asunto(s)
Antioxidantes , Melatonina , Animales , Antioxidantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Melatonina/farmacología , Resveratrol/farmacología , Licopeno/farmacología , Quercetina/farmacología , Cisteamina/metabolismo , Cisteamina/farmacología , Ficocianina/metabolismo , Ficocianina/farmacología , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Estrés Oxidativo , Oocitos/fisiología , Glutatión/farmacología , Acetilcisteína/farmacología , Carnitina/metabolismo , Carnitina/farmacología , Ácido Ascórbico/farmacología , Desarrollo Embrionario
7.
Animals (Basel) ; 12(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36428416

RESUMEN

This study aimed to investigate the effects of different concentrations of N-acetylcysteine (NAC) on the growth, antrum formation, viability, and ultrastructure of bovine secondary follicles cultured in vitro for 18 days. To this end, the follicles were cultured in TCM-199+ medium alone or supplemented with 1.0, 5.0, or 25.0 mM NAC. Follicular growth, antrum formation, viability (calcein-AM and ethidium homodimer-1) and ultrastructure were evaluated at the end of culture period. The results showed that 1.0 mM NAC increased the percentage of growing follicles and the fluorescence intensity for calcein-AM when compared to other treatments (p < 0.05). On the other hand, follicles cultured with 25.0 mM NAC had higher fluorescence intensity for ethidium homodimer-1, which is a sign of degeneration. Ultrastructural analysis showed that oocytes from follicles cultured in control medium alone or with 1 mM NAC had intact zonae pellucidae in close association with oolemmae, but the ooplasm showed mitochondria with a reduced number of cristae. On the other hand, oocytes from follicles cultured with 5 or 25 mM NAC had extremely vacuolated cytoplasm and no recognizable organelles. In conclusion, 1 mM NAC increases cytoplasmic calcein staining and the growth rate in bovine secondary follicles cultured in vitro, but the presence of 5 or 25 mM NAC causes damage in cellular membranes and organelles, as well as reducing the percentages of growing follicles.

8.
Anim Reprod Sci ; 247: 107078, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36179655

RESUMEN

This study aimed to investigate the effects of Aloe vera extract on follicular growth, viability, ultrastructure, and mRNA levels for superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase 1 (GPX1) and peroxiredoxin 6 (PRDX6) in bovine secondary follicles cultured in vitro. To this end, secondary follicles were mechanically isolated from the ovarian cortex and cultured at 38.5 °C, with 5% CO2 in air, for 18 days in TCM-199+ alone or supplemented with 2.5%, 5.0%, 10.0% and 20.0% Aloe vera extract. Follicular growth, morphology and antrum formation were evaluated every 6 days, while ultrastructure was evaluated at the end of culture. Analysis of viability was performed by calcein-AM and ethidium homodimer-1, while mRNA levels for SOD, CAT, GPX1 and PRDX6 were evaluated by real-time PCR at the end of culture. The results show that follicles cultured with 2.5% Aloe vera had increased the rate of antrum formation, while 2.5% and 5.0% Aloe vera improved follicular viability rate. Follicles cultured with 2.5% and 10.0% Aloe vera increased the levels of mRNA for SOD and GPX1 respectively, but the levels of CAT were reduced in follicles cultured with 2.5%, 5.0%, 10.0% and 20.0%. Additionally, follicles cultured with 2.5% of Aloe vera had their ultrastructure well preserved, while those cultured with 5.0%, 10.0% and 20.0% exhibited increased oocyte vacuolization and damaged organelles. In conclusion, 2.5% Aloe vera increases antrum formation, viability and expression of mRNA for SOD in cultured secondary follicles, but higher concentrations of Aloe vera have negative effects on follicular ultrastructure.


Asunto(s)
Aloe , Bovinos , Animales , Aloe/metabolismo , Antioxidantes/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Extractos Vegetales/farmacología , Superóxido Dismutasa
9.
Zygote ; 30(6): 882-890, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36148786

RESUMEN

This study aims to evaluate the effects of N-acetylcysteine (NAC) on bovine oocyte maturation, mitochondrial activity and transzonal projections (TZP), as well as on the levels of reactive oxygen species (ROS) and messenger RNA (mRNA) for catalase (CAT) superoxide dismutase (SOD), periredoxin-6 (Prdx6), glutathione peroxidase (GPx), growth and differentiation factor-9 (GDF9), histone H1Foo, cyclin B1 (CCNB1) and c-Mos. Bovine cumulus-oocyte complexes (COC) of medium-sized antral follicles (3.0-6.0 mm) were prematured in TCM-199 for 8 h at 38.5°C in 5% CO2. After prematuration in the presence of forskolin and C-type natriuretic peptide, COCs were matured in TCM-199 alone or with 0.1, 0.5 or 2.5 mM NAC. Then, oocytes were classified according to the stage of chromatin. Furthermore, mitochondrial activity and intracellular levels of ROS and TZP were also evaluated. The levels of mRNAs for CAT, SOD, Prdx6, GPx, GDF9, H1Foo, CCNB1 and c-Mos were evaluated using real-time polymerase chain reaction (RT-PCR). The results showed that NAC significantly increased the percentages of oocytes with resumption of meiosis when compared with those oocytes matured in control medium. Oocytes had homogeneous mitochondrial distribution, and those cultured with 0.1 and 0.5 mM NAC had lower levels of ROS when compared with the control. In addition, 0.5 mM NAC reduced TZP and the levels of mRNA for CCNB1. In contrast, NAC did not influence the expression of CAT, GPx, Prdx6, SOD, GDF9, H1Foo, and c-Mos. In conclusion, 0.5 mM NAC reduced the levels of ROS, TZP and mRNA for CCNB1, and improved in vitro resumption of meiosis in oocytes from medium-sized bovine antral follicles.


Asunto(s)
Acetilcisteína , Técnicas de Maduración In Vitro de los Oocitos , Bovinos , Animales , Técnicas de Maduración In Vitro de los Oocitos/métodos , Especies Reactivas de Oxígeno/metabolismo , Acetilcisteína/farmacología , Acetilcisteína/metabolismo , Oocitos , Meiosis , Superóxido Dismutasa/metabolismo , Glutatión Peroxidasa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
Reprod Sci ; 29(12): 3321-3334, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35084715

RESUMEN

The developmental competence of oocytes is acquired gradually during follicular development, mainly through oocyte accumulation of RNA molecules and proteins that will be used during fertilization and early embryonic development. Several attempts to develop in vitro culture systems to support preantral follicle development up to maturation are reported in the literature, but oocyte competence has not yet been achieved in human and domestic animals. The difficulties to have fertilizable oocytes are related to thousands of mRNAs and proteins that need to be synthesized, long-term duration of follicular development, size of preovulatory follicles, composition of in vitro culture medium, and the need of multi-step culture systems. The development of a culture system that maintains bidirectional communication between the oocyte and granulosa cells and that meets the metabolic demands of each stage of follicle growth is the key to sustain an extended culture period. This review discusses the physiological and molecular mechanisms that determine acquisition of oocyte competence in vitro, like oocyte transcriptional activity, follicle and oocyte sizes, and length and regulation of follicular development in murine, human, and domestic animal species. The state of art of in vitro follicular development and the challenges to have complete follicular development in vitro are also highlighted.


Asunto(s)
Oocitos , Folículo Ovárico , Embarazo , Femenino , Ratones , Humanos , Animales , Folículo Ovárico/metabolismo , Hormona Folículo Estimulante/metabolismo , Células de la Granulosa/fisiología , Desarrollo Embrionario , Células Cultivadas
11.
Animals (Basel) ; 13(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36611626

RESUMEN

This study evaluated the potential of Cimicifuga racemosa (L.) Nutt extract (CIMI) to reduce the deleterious effects of doxorubicin (DOXO) in oocytes, follicles and stromal cells in mice ovaries cultured in vitro. In experiment 1, mice ovaries were cultured in DMEM+ alone or supplemented with 5, 50 or 500 ng/mL CIMI, while in experiment 2, mice ovaries were cultured in DMEM+ alone or supplemented with 5 ng/mL CIMI (better concentration), 0.3 µg/mL DOXO or both. Thereafter, the ovaries were processed for histological (morphology, growth, activation, extracellular matrix configuration and stromal cell density), immunohistochemical (caspase-3) analyses. Follicle viability was evaluated by fluorescence microscopy (ethidium homodimer-1 and calcein) while real-time PCR was performed to analyses the levels of (mRNA for SOD, CAT and nuclear factor erythroid 2-related factor 2 (NRF2) analyses. The results showed that DOXO reduces the percentage of normal follicles and the density of stromal cells in cultured ovaries, but these harmful effects were blocked by CIMI. The DOXO reduced the percentage of primordial follicles, while the presence of CIMI alone did not influence percentage of primordial follicles. A higher staining for caspase-3 was seen in ovaries cultured in control medium alone or with DOXO when compared with those cultured with CIMI alone or both CIMI and DOXO. In addition, follicles from ovaries cultured with both CIMI and DOXO were stained by calcein, while those follicles cultured with only DOXO were stained with ethidium homodimer-1. Furthermore, ovaries cultured with CIMI or both CIMI and DOXO had higher levels of mRNA for SOD and CAT, respectively, than those cultured with only DOXO. In conclusion, the extract of CIMI protects the ovaries against deleterious effects of DOXO on follicular survival and ovarian stromal cells.

12.
Anim Reprod Sci ; 231: 106801, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34252825

RESUMEN

Oxidative stress is generated by an imbalance between reactive oxygen species (ROS) formation and cellular defense mechanisms. To reduce cellular damage caused by ROS in vivo or in vitro, N-acetyl-cysteine (NAC) is converted into metabolites that have the capacity of stimulating synthesis of glutathione (GSH) which functions directly as free radical scavengers. The NAC antioxidant potential evaluated to the greatest extent is the indirect action of NAC, as a precursor of GSH, with glutathione being the primary antioxidant in cells. During long-term preantral follicle culture, NAC has a synergic action with FSH and an important function in sustaining preantral follicle growth and follicle-cell viability in vitro. The NAC inclusion in in vitro maturation medium for cumulus-oocyte complexes (COC) leads to protection of oocytes from damage induced by heat stress, reductions in ROS, and increases in cumulus cell expansion. Developing embryos are susceptable to oxidative stress because of susceptability to cellular structure damage and not having well-developed defense mechanisms. Results from various indicate there are beneficial effects of NAC on embryonic development by increasing GSH biosynthesis and regulating cell proliferation. In addition, NAC is also an effective antioxidant during cryopreservation of ovarian follicles, oocytes and embryos, because inclusion of NAC in preservation medium leads to improvements in mitochondrial function and cell viability, and reductions in ROS and cellular apoptosis. In this review, there is evaluation of mechanisms of action of NAC and beneficial effects during in vitro culture of preantral follicles, as well as oocyte maturation, embryonic development and cryopreservation.


Asunto(s)
Acetilcisteína/farmacología , Criopreservación/veterinaria , Técnicas de Cultivo de Embriones/veterinaria , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Folículo Ovárico/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Femenino , Humanos , Folículo Ovárico/fisiología
13.
Reprod Fertil Dev ; 32(14): 1190-1199, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32943135

RESUMEN

This study evaluated the effects of epidermal growth factor (EGF) and progesterone (P4) on growth, the resumption of meiosis and expression of eukaryotic translation initiation factor 4E(eIF4E), poly(A)-specific ribonuclease (PARN), oocyte-specific histone H1 (H1FOO), oocyte maturation factor Mos (cMOS), growth differentiation factor-9 (GDF9) and cyclin B1 (CCNB1) mRNA in oocytes from small and medium-sized antral follicles after prematuration and maturation invitro. Oocytes from small (<2.0mm) and medium (3.0-6.0mm) antral follicles were cultured in medium containing EGF (10ng mL-1), P4 (100 µM) or both. After culture, growth rate, resumption of meiosis and eIF4E, PARN, H1FOO, cMOS, GDF9 and CCNB1 mRNA levels were evaluated. P4 increased cMOS, H1FOO and CCNB1 mRNA levels after the culture of oocytes from small antral follicles, and EGF increased CCNB1 mRNA levels in these oocytes. In the medium-sized antral follicles, P4 alone or in combination with EGF increased oocyte diameter after prematuration invitro. In these oocytes, the presence of either EGF or P4 in the culture medium increased cMOS mRNA levels. In conclusion, P4 increases cMOS, H1FOO and CCNB1 mRNA levels after the culture of oocytes from small antral follicles. P4 and the combination of EGF and P4 promote the growth of oocytes from medium-sized antral follicles, and both EGF and P4 increase cMOS mRNA levels.


Asunto(s)
Factor de Crecimiento Epidérmico/farmacología , Meiosis/efectos de los fármacos , Oocitos/efectos de los fármacos , Oogénesis/efectos de los fármacos , Folículo Ovárico/efectos de los fármacos , Progesterona/farmacología , Animales , Bovinos , Ciclina B1/metabolismo , Exorribonucleasas/metabolismo , Femenino , Histonas/metabolismo , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Folículo Ovárico/metabolismo
14.
Zygote ; 28(4): 270-277, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32383419

RESUMEN

Tumour necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) are cytokines that are involved in the development, proliferation and apoptosis of ovarian follicular cells in domestic mammals. The expression of these cytokines in various follicular compartments, depending on the stage of follicle development, demonstrates their involvement in the control of primordial follicle growth up to the preovulatory stage. The mechanism of action of these factors depends on the presence of their receptors that transduce their biological actions. This review shows the expression sites of TNF-α, IL-1ß and their receptors in ovarian follicles, and discusses the mechanism of action of these cytokines during follicle development, oocyte maturation and ovulation in domestic animals.


Asunto(s)
Interleucina-1beta/fisiología , Oocitos/fisiología , Folículo Ovárico/fisiología , Ovulación/fisiología , Factor de Necrosis Tumoral alfa/fisiología , Animales , Femenino , Humanos , Folículo Ovárico/crecimiento & desarrollo
15.
Histol Histopathol ; 33(1): 41-53, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28197987

RESUMEN

Frutalin is a galactose-binding lectin that has an irreversible cytotoxic effect on HeLa cervical cancer cells, by inducing apoptosis and inhibiting cell proliferation. It was previously shown that after in vitro incubation, frutalin is internalized into HeLa cells nucleus, which indicates that frutalin apoptosis-inducing activity might be linked with its nuclear localization. Considering that drugs commonly used for cancer treatment have a deleterious effect on germ cells, the aim of this study was to evaluate the effect of frutalin on the activation, survival, ultrastructure and gene expression in follicles cultured within ovarian tissue. Goat ovarian fragments were cultured for 6 days in α-MEM⁺ alone or supplemented with frutalin (1, 10, 50, 100 or 200 µg/ml). Non-culturad and cultured tissues were processed for histological and ultrastructural analysis and they were also stored to evaluate the expression of anti- and pro-apoptotic genes by quantitative polymerase chain reaction (qPCR). The results showed that the frutalin, at all concentrations tested, reduced follicular survival when compared with control medium. Higher concentrations of frutalin (50, 100 or 200 µg/ml) also reduced follicular survival when compared with those tissues cultured with 1 or 10 µg/ml of frutalin. The ultrastructural analysis showed that atretic cultured follicles had retracted oocytes and a large number of vacuoles spread throughout the cytoplasm. In addition, signs of damage of mitochondrial membranes and cristae were observed. Moreover, although a dose-response effect on gene expression has not been observed, when compared with tissues culture in control medium, the presence of frutalin increased in mRNA expression pro-apoptotic genes. In conclusion, frutalin reduces follicular survival at all concentrations tested, its effects being more pronounced when high concentrations of this lectin (50, 100 and 200 µg/ml) are used. Gene expression profile and ultrastrutural features of cultured follicles suggest that follicular death in goat ovarian tissue cultured in presence of frutalin occurs via necrosis.


Asunto(s)
Antineoplásicos Fitogénicos/toxicidad , Galectinas/toxicidad , Folículo Ovárico/efectos de los fármacos , Ovario/efectos de los fármacos , Animales , Muerte Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Regulación de la Expresión Génica , Cabras , Necrosis , Folículo Ovárico/metabolismo , Folículo Ovárico/ultraestructura , Ovario/metabolismo , Ovario/ultraestructura , Factores de Tiempo , Técnicas de Cultivo de Tejidos
16.
Histol Histopathol ; 33(2): 121-132, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28691729

RESUMEN

Infertility is the result of failure due to an organic disorder of the reproductive organs, especially their gametes. Recently, much progress has been made on generating germ cells, including oocytes, from various types of stem cells. This review focuses on advances in female germ cell differentiation from different kinds of stem cells, with emphasis on embryonic stem cells, adult stem cells, and induced pluripotent stem cells. The advantages and disadvantages of the derivation of female germ cells from several types of stem cells are also highlighted, as well as the ability of stem cells to generate mature and functional female gametes. This review shows that stem cell therapies have opened new frontiers in medicine, especially in the reproductive area, with the possibility of regenerating fertility.


Asunto(s)
Diferenciación Celular/fisiología , Células Germinativas/citología , Oocitos/citología , Células Madre/citología , Animales , Femenino , Humanos
17.
Histol Histopathol ; 31(3): 339-48, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26435174

RESUMEN

This study evaluates the effect of different concentrations (0, 10, 50 and 100ng/mL) of bone morphogenetic protein-2 (BMP-2) on primordial and secondary follicle development. It also investigates the effects of FSH and BMP-2 on the growth, morphology, ultrastructure and expression of mRNA for GDF9, NLRP5 and NPM2 genes in secondary follicles cultured for 18 days. The presence of BMP-2 at all tested concentrations increased the development of primordial follicles in vitro, but the highest concentration of BMP-2 (100 ng/mL) reduced the percentage of normal follicles when compared with tissues cultured with 10 ng/mL BMP-2. During culture of secondary follicles, in contrast to higher concentrations (50 or 100 ng/mL), 10 ng/mL BMP-2 kept the morphology of follicles during initial stages of in vitro culture. This concentration of BMP-2 also benefits maintenance of the ultrastructure of 18-day cultured follicles. The presence of both BMP-2 and FSH in culture medium resulted in a significant (P<0.05) increase in follicular diameter after 18 days of culture. However, both FSH and BMP-2 reduced follicular mRNA expression of GDF9 and NLRP5 when compared to follicles cultured in media containing only FSH. In combination with FSH, BMP-2 reduced the mRNA levels of NPM2, when compared to follicles cultured in control medium. It is concluded from these data that 10 ng/mL BMP-2 promotes the growth of primordial in vitro and it helps to maintain the ultrastructure of secondary follicles, while FSH is more important for better expression of follicular markers like GDF9 and NLRP5.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Folículo Ovárico/fisiología , Animales , Proteína Morfogenética Ósea 2/farmacología , Bovinos , Células Cultivadas , Femenino , Hormona Folículo Estimulante/metabolismo , Hormona Folículo Estimulante/farmacología , Regulación de la Expresión Génica , Factor 9 de Diferenciación de Crecimiento/biosíntesis , Técnicas In Vitro , Nucleoplasminas/biosíntesis , Oocitos , Folículo Ovárico/efectos de los fármacos , ARN Mensajero/análisis
18.
Zygote ; 24(1): 1-17, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25613521

RESUMEN

The bone morphogenetic protein (BMP) family consists of several growth factor proteins that belong to the transforming growth factor-ß (TGF-ß) superfamily. BMPs bind to type I and type II serine-threonine kinase receptors, and transduce signals through the Smad signalling pathway. BMPs have been identified in mammalian ovaries, and functional studies have shown that they are involved in the regulation of oogenesis and folliculogenesis. This review summarizes the role of the BMP system during formation, growth and maturation of ovarian follicles in mammals.


Asunto(s)
Proteínas Morfogenéticas Óseas/fisiología , Oogénesis/fisiología , Ovario/crecimiento & desarrollo , Animales , Receptores de Proteínas Morfogenéticas Óseas/genética , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Femenino , Mamíferos , Ovario/fisiología , Transducción de Señal
19.
Zygote ; 23(4): 537-49, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24869637

RESUMEN

This study aims to investigate the effects of jacalin and follicle-stimulating hormone (FSH) on activation and survival of goat primordial follicles, as well as on gene expression in cultured ovarian tissue. Ovarian fragments were cultured for 6 days in minimum essential medium (MEM) supplemented with jacalin (10, 25, 50 or 100 µg/ml - Experiment 1) or in MEM supplemented with jacalin (50 µg/ml), FSH (50 ng/ml) or both (Experiment 2). Non-cultured and cultured tissues were processed for histological and ultrastructural analysis. Cultured tissues from Experiment 2 were also stored to evaluate the expression of BMP-15, KL (Kit ligand), c-kit, GDF-9 and proliferating cell nuclear antigen (PCNA) by real-time polymerase chain reaction (PCR). The results of Experiment 1 showed that, compared with tissue that was cultured in control medium, the presence of 50 µg/ml of jacalin increased both the percentages of developing follicles and viability. In Experiment 2, after 6 days, higher percentages of normal follicles were observed in tissue cultured in presence of FSH, jacalin or both, but no synergistic interaction between FSH and jacalin was observed. These substances had no significant effect on the levels of mRNA for BMP-15 and KL, but FSH increased significantly the levels of mRNA for PCNA and c-kit. On the other hand, jacalin reduced the levels of mRNA for GDF-9. In conclusion, jacalin and FSH are able to improve primordial follicle activation and survival after 6 days of culture. Furthermore, presence of FSH increases the expression of mRNA for PCNA and c-kit, but jacalin resulted in lower GDF-9 mRNA expression.


Asunto(s)
Hormona Folículo Estimulante/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Folículo Ovárico/efectos de los fármacos , Lectinas de Plantas/farmacología , Animales , Proteína Morfogenética Ósea 15/genética , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Cabras , Factor 9 de Diferenciación de Crecimiento/genética , Folículo Ovárico/citología , Folículo Ovárico/fisiología , Antígeno Nuclear de Célula en Proliferación/genética , Factor de Células Madre/genética , Técnicas de Cultivo de Tejidos
20.
Zygote ; 22(4): 521-32, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23659735

RESUMEN

This study investigated mRNA levels for insulin-like growth factors (IGFs) IGF1 (IGF-I) and IGF2 (IGF-II), IGF receptors (IGF1R and IGF2R), and binding proteins (IGFBP-1, IGFBP-2. IGFBP-3, IGFBP-4, IGFBP-5 and IGFBP-6) in bovine follicles of 0.2, 0.5 or 1.0 mm in diameter. mRNA expression levels in in vitro cultured follicles that reached approximately 0.5 mm were compared with that of in vivo grown follicles. IGF1R and IGF2R expression levels in 0.5 mm in vivo follicles were higher than in 1.0 or 0.2 mm follicles, respectively. IGFBP-1, IGFBP-2. IGFBP-3, IGFBP-4, IGFBP-5 and IGFBP-6 showed variable expression in the follicular size classes analyzed. In vitro grown follicles had significantly reduced expression levels for IGF1, IGF1R, IGFBP-3, IGFBP-5 and IGFBP-6 mRNA when compared with 0.2 mm follicles, but, when compared with in vivo grown follicles (0.5 mm), only IGFBP-1, IGFBP-2, IGFBP-3 and IGFBP-6 showed a reduction in their expression. In conclusion, IGFs, their receptors and IGFBPs showed variable expression of mRNA levels in the follicular size classes analyzed.


Asunto(s)
Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/genética , Folículo Ovárico/fisiología , Receptores de Somatomedina/genética , Animales , Bovinos , Femenino , Regulación de la Expresión Génica , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 4 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 6 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Folículo Ovárico/citología , ARN Mensajero , Receptor IGF Tipo 2/genética , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...