Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Fungi (Basel) ; 9(8)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37623630

RESUMEN

Echinocandins, used for the prevention and treatment of invasive fungal infections, have led to a rise in breakthrough infections caused by resistant Candida species. Among these species, those belonging to the Candida haemulonii complex are rare multidrug-resistant (MDR) yeasts that are frequently misidentified but have emerged as significant healthcare-associated pathogens causing invasive infections. The objectives of this study were to investigate the evolutionary pathways of echinocandin resistance in C. haemulonii by identifying mutations in the FKS1 gene and evaluating the impact of resistance on fitness. After subjecting a MDR clinical isolate of C. haemulonii (named Ch4) to direct selection using increasing caspofungin concentrations, we successfully obtained an isolate (designated Ch4'r) that exhibited a high level of resistance, with MIC values exceeding 16 mg/L for all tested echinocandin drugs (caspofungin, micafungin, and anidulafungin). Sequence analysis revealed a specific mutation in the resistant Ch4'r strain, leading to an arginine-histidine amino acid substitution (R1354H), occurring at the G4061A position of the HS2 region of the FKS1 gene. Compared to the wild-type strain, Ch4'r exhibited significantly reduced growth proliferation, biofilm formation capability, and phagocytosis ratio, indicating a decrease in fitness. Transmission electron microscopy analysis revealed alterations in cell wall components, with a notable increase in cell wall thickness. The resistant strain also exhibited higher amounts (2.5-fold) of chitin, a cell wall-located molecule, compared to the wild-type strain. Furthermore, the resistant strain demonstrated attenuated virulence in the Galleria mellonella larval model. The evolved strain Ch4'r maintained its resistance profile in vivo since the treatment with either caspofungin or micafungin did not improve larval survival or reduce the fungal load. Taken together, our findings suggest that the acquisition of pan-echinocandin resistance occurred rapidly after drug exposure and was associated with a significant fitness cost in C. haemulonii. This is particularly concerning as echinocandins are often the first-line treatment option for MDR Candida species.

2.
J Fungi (Basel) ; 8(6)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35736057

RESUMEN

Although considered rare, the emergent Candida haemulonii species complex, formed by C. haemulonii sensu stricto (Ch), C. duobushaemulonii (Cd) and C. haemulonii var. vulnera (Chv), is highlighted due to its profile of increased resistance to the available antifungal drugs. In the present work, 25 clinical isolates, recovered from human infections during 2011-2020 and biochemically identified by automated system as C. haemulonii, were initially assessed by molecular methods (amplification and sequencing of ITS1-5.8S-ITS2 gene) for precise species identification. Subsequently, the antifungal susceptibility of planktonic cells, biofilm formation and susceptibility of biofilms to antifungal drugs and the secretion of key molecules, such as hydrolytic enzymes, hemolysins and siderophores, were evaluated by classical methodologies. Our results revealed that 7 (28%) isolates were molecularly identified as Ch, 7 (28%) as Chv and 11 (44%) as Cd. Sixteen (64%) fungal isolates were recovered from blood. Regarding the antifungal susceptibility test, the planktonic cells were resistant to (i) fluconazole (100% of Ch and Chv, and 72.7% of Cd isolates), itraconazole and voriconazole (85.7% of Ch and Chv, and 72.7% of Cd isolates); (ii) no breakpoints were defined for posaconazole, but high MICs were observed for 85.7% of Ch and Chv, and 72.7% of Cd isolates; (iii) all isolates were resistant to amphotericin B; and (iv) all isolates were susceptible to echinocandins (except for one isolate of Cd) and to flucytosine (except for two isolates of Cd). Biofilm is a well-known virulence and resistant structure in Candida species, including the C. haemulonii complex. Herein, we showed that all isolates were able to form viable biofilms over a polystyrene surface. Moreover, the mature biofilms formed by the C. haemulonii species complex presented a higher antifungal-resistant profile than their planktonic counterparts. Secreted molecules associated with virulence were also detected in our fungal collection: 100% of the isolates yielded aspartic proteases, hemolysins and siderophores as well as phospholipase (92%), esterase (80%), phytase (80%), and caseinase (76%) activities. Our results reinforce the multidrug resistance profile of the C. haemulonii species complex, including Brazilian clinical isolates, as well as their ability to produce important virulence attributes such as biofilms and different classes of hydrolytic enzymes, hemolysins and siderophores, which typically present a strain-dependent profile.

3.
J Fungi (Basel) ; 6(4)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019733

RESUMEN

Candida haemulonii complex (C. haemulonii, C. duobushaemulonii and C. haemulonii var. vulnera) is well-known for its resistance profile to different available antifungal drugs. Although echinocandins are the most effective class of antifungal compounds against the C. haemulonii species complex, clinical isolates resistant to caspofungin, micafungin and anidulafungin have already been reported. In this work, we present a literature review regarding the effects of echinocandins on this emergent fungal complex. Published data has revealed that micafungin and anidulafungin were more effective than caspofungin against the species forming the C. haemulonii complex. Subsequently, we investigated the susceptibilities of both planktonic and biofilm forms of 12 Brazilian clinical isolates of the C. haemulonii complex towards caspofungin and micafungin (anidulafungin was unavailable). The planktonic cells of all the fungal isolates were susceptible to both of the test echinocandins. Interestingly, echinocandins caused a significant reduction in the biofilm metabolic activity (viability) of almost all fungal isolates (11/12, 91.7%). Generally, the biofilm biomasses were also affected (reduction range 20-60%) upon exposure to caspofungin and micafungin. This is the first report of the anti-biofilm action of echinocandins against the multidrug-resistant opportunistic pathogens comprising the C. haemulonii complex, and unveils the therapeutic potential of these compounds.

4.
ACS Infect Dis ; 6(5): 1273-1282, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32239912

RESUMEN

The polyene amphotericin B (AMB) exerts a powerful and broad antifungal activity. AMB acts by (i) binding to ergosterol, leading to pore formation at the fungal plasma membrane with subsequent ion leakage, and (ii) inducing the intracellular accumulation of reactive oxygen species (ROS). Herein, we have deciphered the AMB resistance mechanisms in clinical isolates of Candida haemulonii complex (C. haemulonii, C. duobushaemulonii, C. haemulonii var. vulnera) in comparison to other clinically relevant non-albicans Candida species. Membrane gas chromatography-mass spectrometry analysis revealed that the vast majority of sterols were composed of ergosterol pathway intermediates, evidencing the absence of AMB target. Supporting this data, C. haemulonii species complex demonstrated poor membrane permeability after AMB treatment. Regarding the oxidative burst, AMB induced the formation of ROS in all species tested; however, this phenomenon was slightly seen in C. haemulonii complex isolates. Our results indicated that these isolates displayed altered respiratory status, as revealed by their poor growth in nonfermented carbon sources, low consumption of oxygen, and derisive mitochondrial membrane potential. The use of specific inhibitors of mitochondrial respiratory chain (complex I-IV) revealed no effects on the yeast growth, highlighting the metabolic shift to fermentative pathway in C. haemulonii strains. Also, C. haemulonii complex proved to be highly resistant to oxidative burst agents, which can be correlated with a high activity of antioxidant enzymes. Our data demonstrated primary evidence suggesting that ergosterol content, mitochondrial function, and fungal redox homeostasis are involved in AMB fungicidal effects and might explain the resistance presented in this multidrug-resistant, emergent, and opportunistic fungal complex.


Asunto(s)
Anfotericina B/farmacología , Antifúngicos/farmacología , Candida/efectos de los fármacos , Farmacorresistencia Fúngica , Candida/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana
5.
Med Mycol ; 58(7): 973-986, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31989170

RESUMEN

The emerging opportunistic pathogens comprising the Candida haemulonii complex (C. haemulonii [Ch], C. duobushaemulonii [Cd] and C. haemulonii var. vulnera[Chv]) are notable for their intrinsic antifungal resistance. Different clinical manifestations are associated with these fungal infections; however, little is known about their biology and potential virulence attributes. Herein, we evaluated some surface properties of 12 clinical isolates of Ch (n = 5), Cd (n = 4) and Chv (n = 3) as well as their virulence on murine macrophages and Galleria mellonella larvae. Scanning electron microscopy demonstrated the presence of homogeneous populations among the species of the C. haemulonii complex, represented by oval yeasts with surface irregularities able to form aggregates. Cell surface hydrophobicity was isolate-specific, exhibiting high (16.7%), moderate (25.0%) and low (58.3%) hydrophobicity. The isolates had negative surface charge, except for one. Mannose/glucose- and N-acetylglucosamine-containing glycoconjugates were evidenced in considerable amounts in all isolates; however, the surface expression of sialic acid was poorly detected. Cd isolates presented significantly higher amounts of chitin than Ch and Chv. Membrane sterol and lipid bodies, containing neutral lipids, were quite similar among all fungi studied. All isolates adhered to inert surfaces in the order: polystyrene > poly-L-lysine-coated glass > glass. Likewise, they interacted with murine macrophages in a quite similar way. Regarding in vivo virulence, the C. haemulonii species complex were able to kill at least 80% of the larvae after 120 hours. Our results evidenced the ability of C. haemulonii complex to produce potential surface-related virulence attributes, key components that actively participate in the infection process described in Candida spp.


Asunto(s)
Adhesividad/efectos de los fármacos , Antifúngicos/uso terapéutico , Candida/aislamiento & purificación , Candidiasis/tratamiento farmacológico , Candidiasis/fisiopatología , Farmacorresistencia Fúngica Múltiple/efectos de los fármacos , Virulencia/efectos de los fármacos , Arthrodermataceae/aislamiento & purificación , Brasil , Humanos , Macrófagos/efectos de los fármacos , Esporas Fúngicas/ultraestructura
6.
Med Mycol ; 57(8): 1024-1037, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30753649

RESUMEN

Candida parapsilosis sensu stricto (C. parapsilosis) has emerged as the second/third commonest Candida species isolated from hospitals worldwide. Candida spp. possess numerous virulence attributes, including peptidases that play multiple roles in both physiological and pathological events. So, fungal peptidases are valid targets for new drugs development. With this premise in mind, we have evaluated the effect of serine peptidase inhibitors (SPIs) on both cell biology and virulence aspects of C. parapsilosis. First, five different SPIs, phenylmethylsulfonyl fluoride, benzamidine, 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride, N-α-tosyl-L-lysine chloromethyl ketone hydrochloride, and N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) were tested, and TPCK showed the best efficacy to arrest fungal growth. Subsequently, the ability of TPCK to modulate physiopathological processes was investigated. Overall, TPCK was able to (i) inhibit the cell-associated serine peptidase activities, (ii) promote morphometric and ultrastructural alterations, (iii) induce an increase in the intracellular oxidation level, which culminates in a vigorous lipid peroxidation and accumulation of neutral lipids in cytoplasmic inclusions, (iv) modulate the expression/exposition of surface structures, such as mannose/glucose-rich glycoconjugates, N-acetylglucosamine-containing molecules, chitin, polypeptides and surface aspartic peptidases, (v) reduce the adhesion to either polystyrene or glass surfaces as well as to partially disarticulate the mature biofilm, (vi) block the fungal interaction with macrophages, and (vii) protect Galleria mellonella from fungal infection, enhancing larvae survivability. Altogether, these results demonstrated that TPCK induced several changes over fungal biology besides the interference with aspects associated to C. parapsilosis virulence and pathogenesis, which indicates that SPIs could be novel promising therapeutic agents in dealing with candidiasis.


Asunto(s)
Antifúngicos/farmacología , Candida parapsilosis/efectos de los fármacos , Candidiasis/prevención & control , Inhibidores de Serina Proteinasa/farmacología , Clorometilcetona de Tosilfenilalanila/farmacología , Animales , Antifúngicos/administración & dosificación , Candida parapsilosis/citología , Candida parapsilosis/crecimiento & desarrollo , Adhesión Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Larva/microbiología , Lepidópteros/microbiología , Estrés Oxidativo , Inhibidores de Serina Proteinasa/administración & dosificación , Análisis de Supervivencia , Clorometilcetona de Tosilfenilalanila/administración & dosificación , Resultado del Tratamiento , Virulencia/efectos de los fármacos
7.
FEMS Yeast Res ; 18(7)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30052907

RESUMEN

Candida haemulonii complex has emerged as notorious yeasts causing invasive infections with high rates of treatment failures. Since there is a particular interest in the development of non-mammalian host models to study microbial virulence, with the aim to evade the ethical impact of animal tests, herein we compared the virulence of C. haemulonii, C. duobushaemulonii and C. haemulonii var. vulnera with non-albicans Candida species (C. tropicalis, C. krusei and C. lusitaniae) on Galleria mellonella and the efficacy of antifungal drugs. All these fungi induced a dose-dependent effect on larvae killing, a decrease in hemocyte density and fungi were phagocytozed by hemocytes in equal proportions. Fungal inoculation caused early larvae melanization after some minutes of injection, followed by an augmented pigmentation after 24 h. Differences among species virulence can be explained, in part, by differences in growth rate and production of hydrolytic enzymes. First-line antifungals were tested with equivalent therapeutic doses and MIC profile in vitro was correlated with in vivo antifungal efficacy. Additionally, fungal burden increased in infected larvae along time and only caspofungin reduced the number of CFUs of C. haemulonii species complex. So, G. mellonella offers a simple and feasible model to study C. haemulonii complex virulence and drug efficacy.


Asunto(s)
Antifúngicos/farmacología , Candida/efectos de los fármacos , Candida/patogenicidad , Candidiasis/microbiología , Lepidópteros/microbiología , Animales , Antifúngicos/uso terapéutico , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Candida/clasificación , Candida/fisiología , Candidiasis/tratamiento farmacológico , Recuento de Colonia Microbiana , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Larva/inmunología , Larva/microbiología , Lepidópteros/inmunología , Pruebas de Sensibilidad Microbiana , Análisis de Supervivencia , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...