Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 201: 107869, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37421847

RESUMEN

Studies on the role of nickel (Ni) in photosynthetic and antioxidant metabolism, as well as in flavonoid synthesis and biological fixation nitrogen in cowpea crop are scarce. The aim of this study was to elucidate the role of Ni in metabolism, photosynthesis and nodulation of cowpea plants. A completely randomized experiment was performed in greenhouse, with cowpea plants cultivated under 0, 0.5, 1, 2, or 3 mg kg-1 Ni, as Ni sulfate. In the study the following parameters were evaluated: activity of urease, nitrate reductase, superoxide dismutase, catalase and ascorbate peroxidase; concentration of urea, n-compounds, photosynthetic pigments, flavonoids, H2O2 and MDA; estimative of gas exchange, and biomass as plants, yield and weight of 100 seeds. At whole-plant level, Ni affected root biomass, number of seeds per pot, and yield, increasing it at 0.5 mg kg-1 and leading to inhibition at 2-3 mg kg-1 (e.g. number of seeds per pot and nodulation). The whole-plant level enhancement by 0.5 mg Ni kg-1 occurred along with increased photosynthetic pigments, photosynthesis, ureides, and catalase, and decreased hydrogen peroxide concentration. This study presents fundamental new insights regarding Ni effect on N metabolism, and nodulation that can be helpful to increase cowpea yield. Considering the increasing population and its demand for staple food, these results contribute to the enhancement of agricultural techniques that increase crop productivity and help to maintain human food security.


Asunto(s)
Vigna , Humanos , Catalasa/metabolismo , Vigna/metabolismo , Fijación del Nitrógeno , Níquel/farmacología , Níquel/metabolismo , Peróxido de Hidrógeno/metabolismo
2.
Plant Physiol Biochem ; 201: 107798, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37301189

RESUMEN

Selenium (Se) beneficial effect on plants is related to an increase in nitrogen (N) assimilation and its role as an abiotic stress mitigator by reactive oxygen species (ROS) scavenging enhanced by antioxidant metabolism. This study aimed to evaluate sugarcane (Saccharum spp.) growth, photosynthetic and antioxidant responses, and sugar accumulation in response to Se supply. The experimental design was a factorial scheme 2 × 4: two sugarcane varieties (RB96 6928 and RB86 7515) and four Se application rates (0; 5; 10 and 20 µmol L-1) applied as sodium selenate in the nutrient solution. Leaf Se concentration increased under Se application in both varieties. The enzymes SOD (EC 1.15.1.1) and APX (EC 1.11.1.11) showed increase activities under Se application on variety RB96 6928. Nitrate reductase activity increased in both varieties resulting in the conversion of nitrate into higher total amino acids concentration indicating an enhanced N assimilation. This led to an increased concentration of chlorophylls and carotenoids, increased CO2 assimilation rate, stomatal conductance, and internal CO2 concentration. Selenium provided higher starch accumulation and sugar profiles in leaves boosting plant growth. This study shows valuable information regarding the role of Se on growth, photosynthetic process, and sugar accumulation in sugarcane leaves, which could be used for further field experiments. The application rate of 10 µmol Se L-1 was the most adequate for both varieties studied considering the sugar concentration and plant growth.


Asunto(s)
Saccharum , Selenio , Selenio/metabolismo , Antioxidantes/metabolismo , Saccharum/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Dióxido de Carbono/metabolismo , Grano Comestible/metabolismo , Azúcares/metabolismo , Hojas de la Planta/metabolismo
3.
Plant Physiol Biochem ; 190: 231-239, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36137309

RESUMEN

This study aimed to investigate the roles of selenium (Se) application on the profile of photosynthetic pigments, oxidant metabolism, flavonoids biosynthesis, nodulation, and its relation to agronomic traits of peanut plants. Two independent experiments were carried out: one conducted in soil and the other in a nutrient solution. When the plants reached the V2 growth stage, five Se doses (0, 7.5, 15, 30, and 45 µg kg-1) and four Se concentrations (0, 5, 10, and 15 µmol L-1) were supplied as sodium selenate. The concentration of photosynthetic pigments, activity of antioxidant enzymes and the concentration of total sugars in peanut leaves increased in response to Se fertilization. In addition, Se improves nitrogen assimilation efficiency by increasing nitrate reductase activity which results in a higher concentration of ureides, amino acids and proteins. Se increases the synthesis of daidzein and genistein in the root, resulting in a greater number of nodules and concentration and transport of ureides to the leaves. Se-treated plants showed greater growth, biomass accumulation in shoots and roots, yield and Se concentration in leaves and grains. Our results contribute to food security and also to increase knowledge about the effects of Se on physiology, biochemistry and biological nitrogen fixation in legume plants.


Asunto(s)
Fabaceae , Selenio , Aminoácidos/metabolismo , Antioxidantes/metabolismo , Arachis/metabolismo , Fabaceae/metabolismo , Genisteína/metabolismo , Isoflavonas , Nitrato Reductasas/metabolismo , Nitrógeno/metabolismo , Oxidantes/metabolismo , Ácido Selénico , Selenio/farmacología , Suelo , Azúcares/metabolismo
4.
Plants (Basel) ; 11(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35890481

RESUMEN

This study was designed to investigate the effects of Azospirillum brasilense and Bradyrhizobium sp. co-inoculation coupled with N application on soil N levels and N in plants (total N, nitrate N-NO3- and ammonium N-NH4+), photosynthetic pigments, cowpea plant biomass and grain yield. An isotopic technique was employed to evaluate 15N fertilizer recovery and derivation. Field trials involved two inoculations-(i) single Bradyrhizobium sp. and (ii) Bradyrhizobium sp. + A. brasilense co-inoculation-and four N fertilizer rates (0, 20, 40 and 80 kg ha-1). The co-inoculation of Bradyrhizobium sp. + A. brasilense increased cowpea N uptake (an increase from 10 to 14%) and grain yield (an average increase of 8%) compared to the standard inoculation with Bradyrhizobium sp. specifically derived from soil and other sources without affecting 15N fertilizer recovery. There is no need for the supplementation of N via mineral fertilizers when A. brasilense co-inoculation is performed in a cowpea crop. However, even in the case of an NPK basal fertilization, applied N rates should remain below 20 kg N ha-1 when co-inoculation with Bradyrhizobium sp. and A. brasilense is performed.

5.
J Trace Elem Med Biol ; 67: 126781, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34015659

RESUMEN

BACKGORUND: Cowpea is a crop widely used in developing countries due its rusticity. Besides its rich genotypic variability, most breeding programs do not explore its potential to improve elements uptake. Selenium (Se) is a scarce element in most soils, resulting in its deficiency being common in human diets. This study aimed to evaluate the interaction between biofortification with Se and genotypic variation in cowpea, on the concentrations of Se in roots, leaves + stem and grains. METHODS: Twenty-nine cowpea genotypes were grown in a greenhouse in the absence (control) and presence of Se (12.5 µg Se kg-1 soil) as sodium selenate, in fully randomized scheme. The plants were cultivated until grains harvest. The following variables were determined: roots dry weight (g), leaves + stems dry weight (g), grains dry weight (g), Se concentration (mg kg-1) in roots, leaves + stems and grains, and Se partitioning to shoots and grains. RESULTS: Selenium application increased the Se concentration in roots, leaves + stems and grains in all genotypes. At least twofold variation in grain Se concentration was observed among genotypes. Selenium application did not impair biomass accumulation, including grain dry weight. Genotype "BRS Guariba" had the largest Se concentration in grains and leaves + stems. Genotype MNC04-795 F-158 had the largest partitioning of Se to shoots and grain, due to elevated dry weights of leaves + stems and grain, and high Se concentrations in these tissues. CONCLUSION: This information might be valuable in future breeding programs to select for genotypes with better abilities to accumulate Se in grain to reduce widespread human Se undernutrition.


Asunto(s)
Vigna , Grano Comestible , Genotipo , Humanos , Ácido Selénico , Selenio , Suelo , Vigna/genética
6.
Plant Physiol Biochem ; 164: 132-146, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33991859

RESUMEN

Phytate or phytic acid (PA), is a phosphorus (P) containing compound generated by the stepwise phosphorylation of myo-inositol. It forms complexes with some nutrient cations, such as Ca, Fe and Zn, compromising their absorption and thus acting as an anti-nutrient in the digestive tract of humans and monogastric animals. Conversely, PAs are an important form of P storage in seeds, making up to 90% of total seed P. Phytates also play a role in germination and are related to the synthesis of abscisic acid and gibberellins, the hormones involved in seed germination. Decreasing PA content in plants is desirable for human dietary. Therefore, low phytic acid (lpa) mutants might present some negative pleiotropic effects, which could impair germination and seed viability. In the present study, we review current knowledge of the genes encoding enzymes that function in different stages of PA synthesis, from the first phosphorylation of myo-inositol to PA transport into seed reserve tissues, and the application of this knowledge to reduce PA concentrations in edible crops to enhance human diet. Finally, phylogenetic data for PA concentrations in different plant families and distributed across several countries under different environmental conditions are compiled. The results of the present study help explain the importance of PA accumulation in different plant families and the distribution of PA accumulation in different foods.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ácido Fítico , Animales , Dieta , Germinación , Humanos , Filogenia , Semillas
7.
Plant Physiol Biochem ; 162: 378-387, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33735742

RESUMEN

Dietary zinc (Zn) deficiency is widespread globally, and is particularly prevalent in low- and middle-income countries (LMICs). Cowpea (Vigna unguiculata (L.) Walp) is consumed widely in LMICs due to its high protein content, and has potential for use in agronomic biofortification strategies using Zn. This study aimed to evaluate the effect of Zn biofortification on grain nutritional quality of 29 cowpea genotypes. Zn application did not increase cowpea yield. In 11 genotypes sucrose concentration, in 12 genotypes total sugar concentration, and in 27 genotypes storage protein concentration increased in response to Zn supply. Fifteen genotypes had lower concentrations of amino acids under Zn application, which are likely to have been converted into storage proteins, mostly comprised of albumin. Phytic acid (PA) concentration and PA/Zn molar ratio were decreased under Zn application. Six genotypes increased shoot ureides concentration in response to Zn fertilization, indicating potential improvements to biological nitrogen fixation. This study provides valuable information on the potential for Zn application to increase cowpea grain nutritional quality by increasing Zn and soluble storage protein and decreasing PA concentration. These results might be useful for future breeding programs aiming to increase cowpea grain Zn concentrations through biofortification.


Asunto(s)
Biofortificación , Vigna , Genotipo , Valor Nutritivo , Fitomejoramiento , Vigna/genética , Zinc/análisis
8.
Ecotoxicol Environ Saf ; 207: 111216, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32916525

RESUMEN

Low concentrations of selenium (Se) are beneficial for plant growth. Foliar Se application at high concentrations is toxic to plants due to the formation of reactive oxygen species (ROS). This study characterized Se toxicity symptoms using X-ray fluorescence (XRF) technique in response to foliar Se application in cowpea plants. Five Se concentrations (0, 10, 25, 50, 100 e 150 g ha-1) were sprayed on leaves as sodium selenate. The visual symptoms of Se toxicity in cowpea leaves were separated into two stages: I) necrotic points with an irregular distribution and internerval chlorosis at the leaf limb border (50-100 g ha-1); II) total chlorosis with the formation of dark brown necrotic lesions (150 g ha-1). Foliar Se application at 50 g ha-1 increased photosynthetic pigments and yield. Ultrastructural analyses showed that Se foliar application above 50 g ha-1 disarranged the upper epidermis of cowpea leaves. Furthermore, Se application above 100 g ha-1 significantly increased the hydrogen peroxide concentration and lipid peroxidation inducing necrotic leaf lesions. Mapping of the elements in leaves using the XRF revealed high Se intensity, specifically in leaf necrotic lesions accompanied by calcium (Ca) as a possible attenuating mechanism of plant stress. The distribution of Se intensities in the seeds was homogeneous, without specific accumulation sites. Phosphorus (P) and sulfur (S) were found primarily located in the embryonic region. Understanding the factors involved in Se accumulation and its interaction with Ca support new preventive measurement technologies to prevent Se toxicity in plants.


Asunto(s)
Selenio/metabolismo , Vigna/metabolismo , Peroxidación de Lípido , Fósforo/análisis , Fotosíntesis , Hojas de la Planta/química , Semillas/química , Ácido Selénico/análisis , Selenio/análisis , Azufre/análisis
9.
Ecotoxicol Environ Saf ; 201: 110777, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32485493

RESUMEN

Selenium (Se) is a beneficial element to higher plants. Application of Se at low concentrations enhances the antioxidant metabolism reducing the reactive oxygen species (ROS) generated by plant membrane cells. This study aimed to evaluate how the application of Se in the forms sodium selenate and sodium selenite regulates ROS scavenging in field-grown cowpea plants. Seven Se application rates (0; 2.5; 5; 10; 20; 40 and 60 g ha-1) of each of the two Se forms were applied to plants via the soil. Photosynthetic pigments concentration, gas exchange parameters, lipid peroxidation by malondialdehyde (MDA) concentration, hydrogen peroxide concentration, activity of catalase (CAT, EC:1.11.1.6), glutathione reductase (GR, EC:1.6.4.2), ascorbate peroxidase (APX, EC:1.11.1.11) and Se concentration in leaves and grains were evaluated. In general, Se application led to a decrease in chlorophyll a concentration whilst leading to an increase in chlorophyll b, indicating conservation of total chlorophyll concentration. Application of 2.5 g ha-1 of Se as selenate provided a notable increase in total chlorophyll and total carotenoids compared to the other application rates. Selenate and selenite application decreased lipid peroxidation. However, each Se source acted in a different pathway to combat ROS. While selenate showed more potential to increase activity of APX and GR, selenite showed a higher potential to increase CAT activity. The negative correlation between CAT and GR is indicative that both pathways might be activated under distinct circumstances. The more prominent activity of CAT under high rates of selenite resulted in a negative correlation of this enzyme with chlorophyll a and carotenoids. Both selenate and selenite application increased sucrose and total sugars concentration in leaves of cowpea plants. Overall, these results indicate that application of Se in cowpea under field conditions stimulates distinct pathways to scavenge ROS. This could prove beneficial to mitigate oxidative stress during plant development.


Asunto(s)
Especies Reactivas de Oxígeno/metabolismo , Ácido Selénico/toxicidad , Ácido Selenioso/toxicidad , Vigna/efectos de los fármacos , Antioxidantes/metabolismo , Ascorbato Peroxidasas/metabolismo , Catalasa/metabolismo , Clorofila , Clorofila A , Glutatión Reductasa/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Ácido Selénico/metabolismo , Ácido Selenioso/metabolismo , Selenio/metabolismo , Selenito de Sodio , Vigna/metabolismo , Vigna/fisiología
10.
Sci Rep ; 10(1): 6160, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32273589

RESUMEN

This research was developed to investigate whether inoculation with Azospirillum brasilense in combination with silicon (Si) can enhance N use efficiency (NUE) in wheat and to evaluate and correlate nutritional and productive components and wheat grain yield. The study was carried out on a Rhodic Hapludox under a no-till system with a completely randomized block design with four replications in a 2 × 2 × 5 factorial scheme: two liming sources (with Ca and Mg silicate as the Si source and limestone); two inoculations (control - without inoculation and seed inoculation with A. brasilense) and five side-dress N rates (0, 50, 100, 150 and 200 kg ha-1). The results of this study showed positive improvements in wheat growth production parameters, NUE and grain yield as a function of inoculation associated with N rates. Inoculation can complement and optimize N fertilization, even with high N application rates. The potential benefits of Si use were less evident; however, the use of Si can favour N absorption, even when associated with A. brasilense. Therefore, studies conducted under tropical conditions with Ca and Mg silicate are necessary to better understand the role of Si applied alone or in combination with growth-promoting bacteria such as A. brasilense.


Asunto(s)
Azospirillum brasilense/metabolismo , Producción de Cultivos/métodos , Nitrógeno/metabolismo , Silicio/metabolismo , Triticum/crecimiento & desarrollo , Compuestos de Calcio/metabolismo , Fertilizantes , Silicatos de Magnesio/metabolismo , Silicatos/metabolismo , Triticum/metabolismo
11.
Ecotoxicol Environ Saf ; 190: 110147, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31918255

RESUMEN

Selenium (Se) is an essential element for human and animal, although considered beneficial to higher plants. Selenium application at high concentration to plants can cause toxicity decreasing the physiological quality of seeds. This study aimed to characterize the Se toxicity on upland rice yield, seed physiology and the localization of Se in seeds using X-ray fluorescence microanalysis (µ-XRF). In the flowering stage, foliar application of Se (0, 250, 500, 1000, 1500, 2000 g ha-1) as sodium selenate was performed. A decrease in rice yield and an increase in seed Se concentrations were observed from 250 g Se ha-1. The storage proteins in the seeds showed different responses with Se application (decrease in albumin, increase in prolamin and glutelin). There was a reduction in the concentrations of total sugars and sucrose with the application of 250 and 500 g Se ha-1. The highest intensities Kα counts of Se were detected mainly in the endosperm and aleurone/pericarp. µ-XRF revealed the spatial distribution of sulfur, calcium, and potassium in the seed embryos. The seed germination decreased, and the electrical conductivity increased in response to high Se application rates showing clearly an abrupt decrease of physiological quality of rice seeds. This study provides information for a better understanding of the effects of Se toxicity on rice, revealing that in addition to the negative effects on yield, there are changes in the physiological and biochemical quality of seeds.


Asunto(s)
Oryza/fisiología , Selenio/toxicidad , Contaminantes del Suelo/toxicidad , Animales , Endospermo , Glútenes , Humanos , Nutrientes , Oryza/metabolismo , Proteínas de Plantas , Semillas/efectos de los fármacos , Semillas/fisiología , Ácido Selénico/análisis , Azufre/metabolismo
12.
J Sci Food Agric ; 100(5): 1990-1997, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-31849063

RESUMEN

BACKGROUND: Selenium (Se) is an essential element for humans and animals. Rice is one of the most commonly consumed cereals in the world, so the agronomic biofortification of cereals with Se may be a good strategy to increase the levels of daily intake of Se by the population. This study evaluated the agronomic biofortification of rice genotypes with Se and its effects on grain nutritional quality. Five rates of Se (0, 10, 25, 50, and 100 g ha -1 ) were applied as selenate via the soil to three rice genotypes under field conditions. RESULTS: Selenium concentrations in the leaves and polished grains increased linearly in response to Se application rates. A highly significant correlation was observed between the Se rates and the Se concentration in the leaves and grains, indicating high translocation of Se. The application of Se also increased the concentration of albumin, globulin, prolamin, and glutelin in polished grains. CONCLUSION: Biofortifying rice genotypes using 25 g Se ha -1 could increase the average daily Se intake from 4.64 to 66 µg day-1 . Considering that the recommended daily intake of Se by adults is 55 µg day-1 , this agronomic strategy could contribute to alleviating widespread Se malnutrition. © 2019 Society of Chemical Industry.


Asunto(s)
Oryza/química , Proteínas de Almacenamiento de Semillas/análisis , Selenio/análisis , Biofortificación , Fertilizantes/análisis , Genotipo , Oryza/genética , Oryza/metabolismo , Hojas de la Planta/química , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Almacenamiento de Semillas/metabolismo , Semillas/química , Semillas/genética , Semillas/metabolismo , Selenio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...