Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros












Intervalo de año de publicación
1.
Curr Microbiol ; 81(10): 319, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167225

RESUMEN

With the emergence of multidrug-resistant microorganisms, microbial agents have become a serious global threat, affecting human health and various plants. Therefore, new therapeutic alternatives, such as chitin-binding proteins, are necessary. Chitin is an essential component of the fungal cell wall, and chitin-binding proteins exhibit antifungal activity. In the present study, chitin-binding peptides isolated from Capsicum chinense seeds were characterized and evaluated for their in vitro antimicrobial effect against the growth of Candida and Fusarium fungi. Proteins were extracted from the seeds and subsequently the chitin-binding proteins were separated by chitin affinity chromatography. After chromatography, two fractions, Cc-F1 (not retained on the column) and Cc-F2 (retained on the column), were obtained. Electrophoresis revealed major protein bands between 6.5 and 26.6 kDa for Cc-F1 and only a ~ 6.5 kDa protein band for Cc-F2, which was subsequently subjected to mass spectrometry. The protein showed similarity with hevein-like and endochitinase and was then named Cc-Hev. Data are available via ProteomeXchange with identifier PXD054607. Next, we predicted the three-dimensional structure of the peptides and performed a peptide docking with (NAG)3. Subsequently, growth inhibition assays were performed to evaluate the ability of the peptides to inhibit microorganism growth. Cc-Hev inhibited the growth of C. albicans (up to 75% inhibition) and C. tropicalis (100% inhibition) and induced a 65% decrease in cell viability for C. albicans and 100% for C. tropicalis. Based on these results, new techniques to combat fungal diseases could be developed through biotechnological applications; therefore, further studies are needed.


Asunto(s)
Antifúngicos , Candida , Capsicum , Quitina , Quitinasas , Fusarium , Semillas , Semillas/química , Antifúngicos/farmacología , Antifúngicos/aislamiento & purificación , Antifúngicos/química , Antifúngicos/metabolismo , Quitina/metabolismo , Quitina/farmacología , Fusarium/efectos de los fármacos , Quitinasas/farmacología , Quitinasas/metabolismo , Quitinasas/química , Quitinasas/aislamiento & purificación , Candida/efectos de los fármacos , Candida/enzimología , Lectinas de Plantas/farmacología , Lectinas de Plantas/química , Lectinas de Plantas/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Péptidos/farmacología , Péptidos/química , Péptidos/aislamiento & purificación , Péptidos/metabolismo , Simulación del Acoplamiento Molecular , Proteínas de Plantas/farmacología , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Péptidos Catiónicos Antimicrobianos
2.
Physiol Plant ; 176(4): e14492, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39166265

RESUMEN

Genomic DNA methylation patterns play a crucial role in the developmental processes of plants and mammals. In this study, we aimed to investigate the significant effects of epigenetic mechanisms on the development of soybean seedlings and metabolic pathways. Our analyses show that 5-azaC-treatment affects radicle development from two Days After Imbibition (DAI), as well as both shoot and root development. We examined the expression levels of key genes related to DNA methylation and demethylation pathways, such as DRM2, which encodes RNA-directed DNA Methylation (RdDM) pathway, SAM synthase, responsible for methyl group donation, and ROS1, a DNA demethylase. In treated seedling roots, we observed an increase in DRM2 expression and a decrease in ROS1 expression. Additionally, 5-azaC treatment altered protein accumulation, indicating epigenetic control over stress response while inhibiting nitrogen assimilation, urea cycle, and glycolysis-related proteins. Furthermore, it influenced the levels of various phytohormones and metabolites crucial for seedling growth, such as ABA, IAA, ethylene, polyamines (PUT and Cad), and free amino acids, suggesting that epigenetic changes may shape soybean responses to pathogens, abiotic stress, and nutrient absorption. Our results assist in understanding how hypomethylation shapes soybean responses to pathogens, abiotic stress, and nutrient absorption crucial for seedling growth, suggesting that the plant's assimilation of carbon and nitrogen, along with hormone pathways, may be influenced by epigenetic changes.


Asunto(s)
Metilación de ADN , Glycine max , Redes y Vías Metabólicas , Reguladores del Crecimiento de las Plantas , Metilación de ADN/genética , Glycine max/genética , Glycine max/metabolismo , Glycine max/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Epigénesis Genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
3.
Theriogenology ; 228: 64-74, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39098122

RESUMEN

In vivo, the temperature inside preovulatory follicles of cows is approximately 1 °C lower than rectal temperature. However, standard bovine oocyte in vitro maturation (IVM) protocols use 38.5 °C based on rectal temperature. This study evaluated the effect of reducing IVM temperature to 37.5 °C on the proteomic profile of oocytes compared to the routine 38.5 °C. Nuclear maturation rate and cumulus cell (CC) expansion (30 COCs per group, 21 replicates) were assessed by observing the first polar body and using a subjective scoring method (0-4). Total nitrite concentrations in the culture medium were measured using the Griess method. Differential proteomics was performed using LC-MS/MS on pooled oocyte samples (500 matured oocytes per group, three replicates), followed by gene ontology enrichment, protein-protein interaction, and putative miRNA target analyses. No significant differences were observed between the groups in nuclear maturation, CC expansion, or nitrite concentration (P > 0.05). A total of 806 proteins were identified, with 7 up-regulated and 12 down-regulated in the treatment group compared to the control. Additionally, 12 proteins were unique to the control group, and 8 were unique to the treatment group. IVM at 37.5 °C resulted in the upregulation of proteins involved in protein folding and GTP binding, and the downregulation of enzymes with oxidoreductase activity and proteins involved in cytoskeletal fiber formation. Furthermore, 43 bovine miRNAs potentially regulating these genes (DES, HMOX2, KRT75, FARSA, IDH2, CARHSP1) were identified. We conclude that IVM of bovine oocytes at 37.5 °C induces significant proteomic changes without impacting nuclear maturation, cumulus cell expansion, or nitrite concentration in the IVM medium.


Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos , Oocitos , Proteómica , Animales , Bovinos , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Oocitos/fisiología , Femenino , Temperatura , Proteoma
4.
Biochemistry ; 63(14): 1824-1836, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38968244

RESUMEN

Faced with the emergence of multiresistant microorganisms that affect human health, microbial agents have become a serious global threat, affecting human health and plant crops. Antimicrobial peptides have attracted significant attention in research for the development of new microbial control agents. This work's goal was the structural characterization and analysis of antifungal activity of chitin-binding peptides from Capsicum baccatum and Capsicum frutescens seeds on the growth of Candida and Fusarium species. Proteins were initially submitted to extraction in phosphate buffer pH 5.4 and subjected to chitin column chromatography. Posteriorly, two fractions were obtained for each species, Cb-F1 and Cf-F1 and Cb-F2 and Cf-F2, respectively. The Cb-F1 (C. baccatum) and Cf-F1 (C. frutescens) fractions did not bind to the chitin column. The electrophoresis results obtained after chromatography showed two major protein bands between 3.4 and 14.2 kDa for Cb-F2. For Cf-F2, three major bands were identified between 6.5 and 14.2 kDa. One band from each species was subjected to mass spectrometry, and both bands showed similarity to nonspecific lipid transfer protein. Candida albicans and Candida tropicalis had their growth inhibited by Cb-F2. Cf-F2 inhibited the development of C. albicans but did not inhibit the growth of C. tropicalis. Both fractions were unable to inhibit the growth of Fusarium species. The toxicity of the fractions was tested in vivo on Galleria mellonella larvae, and both showed a low toxicity rate at high concentrations. As a result, the fractions have enormous promise for the creation of novel antifungal compounds.


Asunto(s)
Antifúngicos , Candida , Quitina , Fusarium , Simulación del Acoplamiento Molecular , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/metabolismo , Quitina/química , Quitina/metabolismo , Fusarium/efectos de los fármacos , Candida/efectos de los fármacos , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Animales , Capsicum/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacología , Pruebas de Sensibilidad Microbiana , Unión Proteica , Conformación Proteica
5.
Pestic Biochem Physiol ; 200: 105829, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582575

RESUMEN

Cowpea weevil, Callosobruchus maculatus, is the primary pest of stored cowpea seeds. The management of this infestation currently relies on insecticides, resulting in environmental pollution and selection of insecticide-resistant pests. Consequently, research efforts are being devoted to identify natural insecticides as sustainable and environment friendly alternatives for the control of C. maculatus. In this study, we explore the toxic effects of the nonhost seeds Parkia multijuga, Copaifera langsdorffii, Ormosia arborea, Amburana cearensis, Lonchocarpus guilleminianus, Sapindus saponaria, and Myroxylon peruiferum, on the cowpea weevil C. maculatus. Notably, all nonhost seeds led to reductions between 60 and 100% in oviposition by C. maculatus females. Additionally, the larvae were unable to penetrate the nonhost seeds. Artificial seeds containing 0.05% to 10% of cotyledon flour were toxic to C. maculatus larvae. Approximately 40% of larvae that consumed seeds containing 0.05% of O. arborea failed to develop, in contrast to control larvae. Proteomic analysis of A. cearensis and O. arborea seeds identify revealed a total of 371 proteins. From those, 237 are present in both seeds, 91 were exclusive to O. arborea seeds, and 43 were specific to A. cearensis seeds. Some of these proteins are related to defense, such as proteins containing the cupin domain and 11S seed storage protein. The in silico docking of cupin domain-containing proteins and 11S storage protein with N-acetylglucosamine (NAG)4 showed negative values of affinity energy, indicating spontaneous binding. These results showed that nonhost seeds have natural insecticide compounds with potential to control C. maculatus infestation.


Asunto(s)
Escarabajos , Insecticidas , Vigna , Gorgojos , Animales , Femenino , Insecticidas/toxicidad , Proteómica , Larva , Semillas/química
6.
Sci Rep ; 14(1): 8867, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632280

RESUMEN

Papaya (Carica papaya) is a trioecious species with female, male, and hermaphrodite plants. Given the sex segregation, selecting hermaphroditic plants is vital for orchard establishment due to their greater commercial value. However, selecting hermaphrodite plants through sexing is laborious and costly. Moreover, environmental stressors can exacerbate the issue by potentially inducing abnormal flower development, thus affecting fruit quality. Despite these challenges, the molecular mechanisms governing sex development in papaya remain poorly understood. Thus, this study aimed to identify proteins associated with sex development in female and hermaphrodite flowers of papaya through comparative proteomic analysis. Proteins from flower buds at the early and late developmental stages of three papaya genotypes (UENF-CALIMAN 01, JS12, and Sunrise Solo 72/12) were studied via proteomic analysis via the combination of the shotgun method and nanoESI-HDMSE technology. In buds at an early stage of development, 496 (35.9%) proteins exhibited significantly different abundances between sexes for the SS72/12 genotype, 139 (10%) for the JS12 genotype, and 165 (11.9%) for the UC-01 genotype. At the final stage of development, there were 181 (13.5%) for SS72/12, 113 (8.4%) for JS12, and 125 (9.1%) for UC-01. The large group of differentially accumulated proteins (DAPs) between the sexes was related to metabolism, as shown by the observation of only the proteins that exhibited the same pattern of accumulation in the three genotypes. Specifically, carbohydrate metabolism proteins were up-regulated in hermaphrodite flower buds early in development, while those linked to monosaccharide and amino acid metabolism increased during late development. Enrichment of sporopollenin and phenylpropanoid biosynthesis pathways characterizes hermaphrodite samples across developmental stages, with predicted protein interactions highlighting the crucial role of phenylpropanoids in sporopollenin biosynthesis for pollen wall formation. Most of the DAPs played key roles in pectin, cellulose, and lignin synthesis and were essential for cell wall formation and male flower structure development, notably in the pollen coat. These findings suggest that hermaphrodite flowers require more energy for development, likely due to complex pollen wall formation. Overall, these insights illuminate the molecular mechanisms of papaya floral development, revealing complex regulatory networks and energetic demands in the formation of male reproductive structures.


Asunto(s)
Biopolímeros , Carica , Carotenoides , Carica/genética , Proteómica , Procesos de Determinación del Sexo , Flores/genética , Regulación de la Expresión Génica de las Plantas
7.
J Proteomics ; 299: 105156, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38467267

RESUMEN

Plants exhibit phenotypic plasticity in response to environmental variations, which can lead to stable genetic and physiological adaptations if exposure to specific conditions is prolonged. Myrsine coriacea demonstrates this through its ability to thrive in diverse environments. The objective of the article is to investigate potential differences in protein accumulation and physiological responses of M. coriacea by cultivating plants from seeds collected from four populations at different altitudes in a common garden experiment. Additionally, we aim to evaluate whether these differences exhibit genetic fixation. Through integrated physiological and proteomic analyses, we identified 170 differentially accumulated proteins and observed significant physiological differences among the populations. The high-altitude population (POP1) exhibited a unique proteomic profile with significant down-regulation of proteins involved in carbon fixation and energy metabolism, suggesting a potential reduction in photosynthetic efficiency. Physiological analyses showed lower leaf nitrogen content, net CO2 assimilation rate, specific leaf area, and relative growth rate in stem height for POP1, alongside higher leaf carbon isotopic composition (δ13C) and leaf carbon (C) content. These findings provide insight into the complex interplay between proteomic and physiological adaptations in M. coriacea and underscore the importance of local adaptations. SIGNIFICANCE: We investigate the adaptive responses of M. coriacea, a shrub with a broad phenotypic range, by cultivating plants from seeds collected at four different altitudes in a common garden experiment. These findings provide insight into the complex interplay between proteomic and physiological adaptations in M. coriacea and underscore the importance of local adaptations in the face of climate change. This study contributes to advancing our understanding of the influence of altitude-specific selection pressures on the molecular biology and physiology of plants in natural populations. Our findings provide valuable insights that enhance our ability to predict and comprehend how plants respond to climate change.


Asunto(s)
Altitud , Myrsine , Proteómica , Adaptación Fisiológica , Plantas , Carbono
8.
Plant Physiol Biochem ; 208: 108444, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38382344

RESUMEN

Under conditions of soil water limitation and adequate irrigation, we conducted an investigation into the growth dynamics, gas exchange performance, and proteomic profiles of two inbred popcorn lines-L71, characterized as drought-tolerant, and L61, identified as drought-sensitive. Our goal was to uncover the mechanisms associated with tolerance to soil water limitation during the flowering. The plants were cultivated until grain filling in a substrate composed of perlite and peat within 150cm long lysimeter, subjected to two water conditions (WC): i) irrigated (WW) at lysimeter capacity (LC - 100%), and ii) water-stressed (WS). Under WS conditions, the plants gradually reached 45% of LC and were maintained at this level for 10 days. Irrespective of the WC, L71 exhibited the highest values of dry biomass in both shoot and root systems, signifying its status as the most robust genotype. The imposed water limitation led to early senescence, chlorophyll degradation, and increased anthocyanin levels, with a more pronounced impact observed in L61. Traits related to gas exchange manifested differences between the lines only under WS conditions. A total of 1838 proteins were identified, with 169 differentially accumulated proteins (DAPs) in the tolerant line and 386 DAPs in the sensitive line. Notably, differences in energy metabolism, photosynthesis, oxidative stress response, and protein synthesis pathways were identified as the key distinctions between L71 and L61. Consequently, our findings offer valuable insights into the alterations in proteomic profiles associated with the adaptation to soil water limitation in popcorn.


Asunto(s)
Estrés Fisiológico , Zea mays , Zea mays/metabolismo , Estrés Fisiológico/genética , Sequías , Proteómica , Suelo/química , Agua/metabolismo
9.
J Exp Bot ; 75(5): 1390-1406, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37975812

RESUMEN

Age affects the production of secondary metabolites, but how developmental cues regulate secondary metabolism remains poorly understood. The achiote tree (Bixa orellana L.) is a source of bixin, an apocarotenoid used in diverse industries worldwide. Understanding how age-dependent mechanisms control bixin biosynthesis is of great interest for plant biology and for economic reasons. Here we overexpressed miRNA156 (miR156) in B. orellana to comprehensively study the effects of the miR156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) module on age-dependent bixin biosynthesis in leaves. Overexpression of miR156 in annatto plants (miR156ox) reduced BoSPL transcript levels, impacted leaf ontogeny, lessened bixin production, and increased abscisic acid levels. Modulation of expression of BoCCD4-4 and BoCCD1, key genes in carotenoid biosynthesis, was associated with diverting the carbon flux from bixin to abscisic acid in miR156ox leaves. Proteomic analyses revealed an overall low accumulation of most secondary metabolite-related enzymes in miR156ox leaves, suggesting that miR156-targeted BoSPLs may be required to activate several secondary metabolic pathways. Our findings suggest that the conserved BomiR156-BoSPL module is deployed to regulate leaf dynamics of bixin biosynthesis, and may create novel opportunities to fine-tune bixin output in B. orellana breeding programs.


Asunto(s)
Ácido Abscísico , Bixaceae , Extractos Vegetales , Bixaceae/genética , Bixaceae/metabolismo , Ácido Abscísico/metabolismo , Proteómica , Fitomejoramiento , Carotenoides/metabolismo
10.
Plants (Basel) ; 12(22)2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-38005788

RESUMEN

Sex segregation increases the cost of Carica papaya production through seed-based propagation. Therefore, in vitro techniques are an attractive option for clonal propagation, especially of hermaphroditic plants. Here, we performed a temporal analysis of the proteome of C. papaya calli aiming to identify the key players involved in embryogenic callus formation. Mature zygotic embryos used as explants were treated with 20 µM 2,4-dichlorophenoxyacetic acid to induce embryogenic callus. Total proteins were extracted from explants at 0 (zygotic embryo) and after 7, 14, and 21 days of induction. A total of 1407 proteins were identified using a bottom-up proteomic approach. The clustering analysis revealed four distinct patterns of protein accumulation throughout callus induction. Proteins related to seed maturation and storage are abundant in the explant before induction, decreasing as callus formation progresses. Carbohydrate and amino acid metabolisms, aerobic respiration, and protein catabolic processes were enriched throughout days of callus induction. Protein kinases associated with auxin responses, such as SKP1-like proteins 1B, accumulated in response to callus induction. Additionally, regulatory proteins, including histone deacetylase (HD2C) and argonaute 1 (AGO1), were more abundant at 7 days, suggesting their role in the acquisition of embryogenic competence. Predicted protein-protein networks revealed the regulatory role of proteins 14-3-3 accumulated during callus induction and the association of proteins involved in oxidative phosphorylation and hormone response. Our findings emphasize the modulation of the proteome during embryogenic callus initiation and identify regulatory proteins that might be involved in the activation of this process.

11.
Physiol Mol Biol Plants ; 29(3): 319-334, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37033760

RESUMEN

Chenopodium quinoa Willd. is a crop species domesticated over 5000 years ago. This species is highly diverse, with a geographical distribution that covers more than 5000 km from Colombia to Chile, going through a variety of edaphoclimatic conditions. Quinoa grains have great nutritional quality, raising interest at a worldwide level. In this work, by using shotgun proteomics and in silico analysis, we present an overview of mature quinoa seed proteins from a physiological context and considering the process of seed maturation and future seed germination. For this purpose, we selected grains from four contrasting quinoa cultivars (Amarilla de Maranganí, Chadmo, Sajama and Nariño) with different edaphoclimatic and geographical origins. The results give insight on the most important metabolic pathways for mature quinoa seeds including: starch synthesis, protein bodies and lipid bodies composition, reserves and their mobilization, redox homeostasis, and stress related proteins like heat-shock proteins (HSPs) and late embryogenesis abundant proteins (LEAs), as well as evidence for capped and uncapped mRNA translation. LEAs present in our analysis show a specific pattern of expression matching that of other species. Overall, this work presents a complete snapshot of quinoa seeds physiological context, providing a reference point for further studies. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01295-8.

12.
J Proteomics ; 273: 104790, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36535623

RESUMEN

Somatic embryogenesis (SE) involves modifications of cellular, biochemical, genetic, and epigenetic patterns. Our work investigated proteins as markers of embryogenic response and characterized the redox state of embryogenic cultures (EC) of Guadua chacoensis. We identified a total of 855 proteins; 129 were up- and 136 down-accumulated in EC as compared with non-embryogenic culture (NEC). Additionally, 37 and 22 proteins were identified as unique in EC and NEC, respectively. Heat-shock proteins as unique proteins and increased activity in Superoxide Dismutase and Guaiacol Peroxidase in EC suggest that the embryogenic response requires activation of the stress response mechanism. Ribosomal, translational, and glycolytic proteins in EC seem to be associated with protein synthesis and energy sources for embryo development, respectively. Accumulation of cell wall-related proteins, such as Arabinogalactan and Polygalacturonase inhibitors, and signaling transduction proteins, including Chitinase, Phospholipase, and Guanine nucleotide-binding proteins in EC seems to be associated with embryogenic response. Enhancement of H2O2 content in EC compared to NEC suggests a possible role as a secondary messenger in SE. Altogether, the present study identified marker proteins of embryogenic response in G. chacoensis and revealed the activation of ROS scavenging enzymes to assure cell redox homeostasis and SE responses. SIGNIFICANCE: Somatic embryogenesis is a promising technique for the propagation and conservation of bamboo species; however, this route has been the least understood and studied until now. This study corresponds to the first work approaching proteomics complemented with biochemical analyses in the somatic embryogenesis of bamboo, bringing robust and precise information that can improve our understanding of this complex morphogenetic route.


Asunto(s)
Antioxidantes , Poaceae , Proteómica/métodos , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/metabolismo , Desarrollo Embrionario , Técnicas de Embriogénesis Somática de Plantas/métodos , Regulación de la Expresión Génica de las Plantas
13.
Protoplasma ; 260(2): 467-482, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35788779

RESUMEN

Plants adjust their complex molecular, biochemical, and metabolic processes to overcome salt stress. Here, we investigated the proteomic and epigenetic alterations involved in the morphophysiological responses of Pfaffia glomerata, a medicinal plant, to salt stress and the demethylating agent 5-azacytidine (5-azaC). Moreover, we investigated how these changes affected the biosynthesis of 20-hydroxyecdysone (20-E), a pharmacologically important specialized metabolite. Plants were cultivated in vitro for 40 days in Murashige and Skoog medium supplemented with NaCl (50 mM), 5-azaC (25 µM), and NaCl + 5-azaC. Compared with the control (medium only), the treatments reduced growth, photosynthetic rates, and photosynthetic pigment content, with increase in sucrose, total amino acids, and proline contents, but a reduction in starch and protein. Comparative proteomic analysis revealed 282 common differentially accumulated proteins involved in 87 metabolic pathways, most of them related to amino acid and carbohydrate metabolism, and specialized metabolism. 5-azaC and NaCl + 5-azaC lowered global DNA methylation levels and 20-E content, suggesting that 20-E biosynthesis may be regulated by epigenetic mechanisms. Moreover, downregulation of a key protein in jasmonate biosynthesis indicates the fundamental role of this hormone in the 20-E biosynthesis. Taken together, our results highlight possible regulatory proteins and epigenetic changes related to salt stress tolerance and 20-E biosynthesis in P. glomerata, paving the way for future studies of the mechanisms involved in this regulation.


Asunto(s)
Amaranthaceae , Proteómica , Azacitidina/farmacología , Cloruro de Sodio/farmacología , Tolerancia a la Sal/genética , Epigénesis Genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico
14.
Methods Mol Biol ; 2527: 83-95, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35951185

RESUMEN

Somatic embryogenesis is the process by which embryos are formed from a single or small group of somatic cells in response to specific stimuli. Somatic embryogenesis has been applied to achieve mass clonal propagation on an industrial scale and to increase the agronomic performance of species of economic interest, including sugarcane. The use of somatic embryogenesis in sugarcane stands out as a biotechnological tool with a high potential for application in the clonal propagation of disease-free elite varieties, as an essential part of genetic transformation protocols, and in the production of synthetic seeds. A better understanding of each phase of somatic embryogenesis can help to optimize the process to enhance yields and produce high-quality emblings. In this chapter, we describe a detailed protocol for somatic embryogenesis in sugarcane (Saccharum sp.) to be used in research projects for small-scale production. This protocol comprises all steps from explant preparation to the establishment of sugarcane emblings.


Asunto(s)
Saccharum , Grano Comestible , Desarrollo Embrionario/genética , Saccharum/genética , Semillas/genética
15.
Plant Physiol Biochem ; 185: 55-68, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35661586

RESUMEN

Mitochondria are the major organelles of energy production; however, active mitochondria can decline their energetic role and show a dysfunctional status. Mitochondrial dysfunction was induced by high non-physiological level of L-galactone-1,4-lactone (L-GalL), the precursor of ascorbate (AsA), in plant mitochondria. The dysfunction induced by L-GalL was associated with the fault in the mitochondrial electron partition and reactive oxygen species (ROS) over-production. Using mitochondria from RNAi-plant lines harbouring silenced L-galactone-1,4-lactone dehydrogenase (L-GalLDH) activity, it was demonstrated that such dysfunction is dependent on this enzyme activity. The capacity of alternative respiration was strongly decreased by L-GalL, probably mediated by redox-inactivation of the alternative oxidase (AOX) enzyme. Although, alternative respiration was shown to be the key factor that helps support AsA synthesis in dysfunctional mitochondria. Experiments with respiratory inhibitors showed that ROS formation and mitochondrial dysfunction were more associated with the decline in the activities of COX (cytochrome oxidase) and particularly AOX than with the lower activities of respiratory complexes I and III. The application of high L-GalL concentrations induced proteomic changes that indicated alterations in proteins related to oxidative stress and energetic status. However, supra-optimal L-GalL concentration was not deleterious for plants. Instead, the L-GalLDH activity could be positive. Indeed, it was found that wild type plants performed better growth than L-GalLDH-RNAi plants in response to high non-physiological L-GalL concentrations.


Asunto(s)
Proteínas Mitocondriales , Proteómica , Respiración de la Célula , Lactonas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
16.
Res Microbiol ; 173(4-5): 103922, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35104604

RESUMEN

Cadmium (Cd) is a heavy metal used as raw material for several fertilizers and pesticides. The increase of Cd concentration in soils has been observed in cultivated areas, affecting animals, plants, and microorganisms. Gluconacetobacter diazotrophicus is a plant growth-promoting bacterium able to survive under adverse environmental conditions. Here, we investigated key mechanisms involved with the resistance of G. diazotrophicus to Cd. Proteomic analyses revealed that the main pathways regulated in response to Cd are nutrient uptake, multidrug efflux pumps, response to oxidative stress, and protein quality control system. Extracytoplasmic proteins related to multidrug efflux pumps were up-accumulated, while several proteins related to nutrients uptake were down-accumulated. The relevance of these pathways for bacterial resistance to Cd was investigated by reverse genetic analysis using mutants defective for nutrient uptake (tdbr, ompW, and oprB), multidrug efflux (czcC), response to oxidative stress (ggt), and protein quality control system (clpX). Our data demonstrated the essential role of the tdbr and czcC genes for resistance to Cd in G. diazotrophicus. These results contribute to a better understanding of the resistance mechanisms to Cd in G. diazotrophicus, shedding light on responses associated with extracytoplasmic compartments.


Asunto(s)
Cadmio , Gluconacetobacter , Cadmio/metabolismo , Gluconacetobacter/genética , Gluconacetobacter/metabolismo , Plantas/microbiología , Proteómica
17.
Sci Rep ; 12(1): 1521, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35087128

RESUMEN

We investigated the proteomic profiles of two popcorn inbred lines, P2 (N-efficient and N-responsive) and L80 (N-inefficient and nonresponsive to N), under low (10% of N supply) and high (100% of N supply) nitrogen environments, associated with agronomic- and physiological-related traits to NUE. The comparative proteomic analysis allowed the identification of 79 differentially accumulated proteins (DAPs) in the comparison of high/low N for P2 and 96 DAPs in the comparison of high/low N for L80. The NUE and N uptake efficiency (NUpE) presented high means in P2 in comparison to L80 at both N levels, but the NUE, NUpE, and N utilization efficiency (NUtE) rates decreased in P2 under a high N supply. DAPs involved in energy and carbohydrate metabolism suggested that N regulates enzymes of alternative pathways to adapt to energy shortages and that fructose-bisphosphate aldolase may act as one of the key primary nitrate responsive proteins in P2. Proteins related to ascorbate biosynthesis and nitrogen metabolism increased their regulation in P2, and the interaction of L-ascorbate peroxidase and Fd-NiR may play an important role in the NUE trait. Taken together, our results provide new insights into the proteomic changes taking place in contrasting inbred lines, providing useful information on the genetic improvement of NUE in popcorn.


Asunto(s)
Proteómica
18.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35082155

RESUMEN

Desiccation tolerance is an ancient and complex trait that spans all major lineages of life on earth. Although important in the evolution of land plants, the mechanisms that underlay this complex trait are poorly understood, especially for vegetative desiccation tolerance (VDT). The lack of suitable closely related plant models that offer a direct contrast between desiccation tolerance and sensitivity has hampered progress. We have assembled high-quality genomes for two closely related grasses, the desiccation-tolerant Sporobolus stapfianus and the desiccation-sensitive Sporobolus pyramidalis Both species are complex polyploids; S. stapfianus is primarily tetraploid, and S. pyramidalis is primarily hexaploid. S. pyramidalis undergoes a major transcriptome remodeling event during initial exposure to dehydration, while S. stapfianus has a muted early response, with peak remodeling during the transition between 1.5 and 1.0 grams of water (gH2O) g-1 dry weight (dw). Functionally, the dehydration transcriptome of S. stapfianus is unrelated to that for S. pyramidalis A comparative analysis of the transcriptomes of the hydrated controls for each species indicated that S. stapfianus is transcriptionally primed for desiccation. Cross-species comparative analyses indicated that VDT likely evolved from reprogramming of desiccation tolerance mechanisms that evolved in seeds and that the tolerance mechanism of S. stapfianus represents a recent evolution for VDT within the Chloridoideae. Orthogroup analyses of the significantly differentially abundant transcripts reconfirmed our present understanding of the response to dehydration, including the lack of an induction of senescence in resurrection angiosperms. The data also suggest that failure to maintain protein structure during dehydration is likely critical in rendering a plant desiccation sensitive.


Asunto(s)
Adaptación Fisiológica/genética , Poaceae/genética , Desecación/métodos , Genómica/métodos , Hojas de la Planta/genética , Proteínas de Plantas/genética , Agua/metabolismo
19.
J Proteomics ; 252: 104434, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34818586

RESUMEN

Understanding the mechanisms that endow a somatic cell with the ability to differentiate into a somatic embryo, which could result in numerous biotechnological applications, is still a challenge. The objective of this work was to identify some of the molecular and physiological mechanisms responsible for the acquisition of embryogenic competence during somatic embryogenesis in Carica papaya L. We performed a broad characterization of embryogenic (EC) and nonembryogenic calli (NEC) of using global and mitochondrial proteomic approaches, histomorphology, histochemistry, respiratory activity, and endogenous hormonal and hydrogen peroxide (H2O2) contents. EC and NEC presented remarkable differences in anatomical and histochemical characteristics, with EC showing a higher reactivity for the presence of proteins and neutral polysaccharides. Our results demonstrate that mitochondrial metabolism affects the embryogenic competence of C. papaya callus. The EC presented higher participation of alternative oxidase (AOX) enzymes, higher total cell respiration and presented a stronger accumulation of mitochondrial stress response proteins. Differential accumulation of auxin-responsive Gretchen Hagen 3 (GH3) family proteins in EC was related to a decrease in the content of free 2,4-dichlorophenoxyacetic acid (2,4-D). EC also showed higher endogenous H2O2 contents. H2O2 is a promising molecule for further investigation in differentiation protocols for C. papaya somatic embryos. SIGNIFICANCE: To further advance the understanding of somatic embryogenesis, we performed a broad characterization of embryogenic and nonembryogenic callus, through global and mitochondrial proteomic approaches, histomorphology, histochemistry, respiratory activity, and endogenous hormonal and hydrogen peroxide contents. Based on these results, we propose a working model for the competence of papaya callus. This model suggests that GH3 proteins play an important role in the regulation of auxins. In addition, embryogenic callus showed a greater abundance of stress response proteins and folding proteins. Embryogenic callus respiration occurs predominantly via AOX, and the inhibition of its activity is capable of inhibiting callus differentiation. Although the embryogenic callus presented greater total respiration and a greater abundance of oxidative phosphorylation proteins, they had less COX participation and less coupling efficiency, indicating less ATP production.


Asunto(s)
Carica , Proteómica , Desarrollo Embrionario , Peróxido de Hidrógeno , Proteómica/métodos
20.
J Plant Physiol ; 268: 153587, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34906795

RESUMEN

Plant embryogenic cell culture allows mass propagation and genetic manipulation, but the mechanisms that determine the fate of these totipotent cells in somatic embryos have not yet been elucidated. Here, we performed label-free quantitative proteomics and phosphoproteomics analyses to determine signaling events related to sugarcane somatic embryo differentiation, especially those related to protein phosphorylation. Embryogenic calli were compared at multiplication (EC0, dedifferentiated cells) and after 14 days of maturation (EC14, onset of embryo differentiation). Metabolic pathway analysis showed enriched lysine degradation and starch/sucrose metabolism proteins during multiplication, whereas the differentiation of somatic embryos was found to involve the enrichment of energy metabolism, including the TCA cycle and oxidative phosphorylation. Multiplication-related phosphoproteins were associated with transcriptional regulation, including SNF1 kinase homolog 10 (KIN10), SEUSS (SEU), and LEUNIG_HOMOLOG (LUH). The regulation of multiple light harvesting complex photosystem II proteins and phytochrome interacting factor 3-LIKE 5 were predicted to promote bioenergetic metabolism and carbon fixation during the maturation stage. A motif analysis revealed 15 phosphorylation motifs. The [D-pS/T-x-D] motif was overrepresented during somatic embryo differentiation. A protein-protein network analysis predicted interactions among SNF1-related protein kinase 2 (SnRK2), abscisic acid-responsive element-binding factor 2 (ABF2), and KIN10, which indicated the role of these proteins in embryogenic competence. The predicted interactions between TOPLESS (TPL) and histone deacetylase 19 (HD19) may be involved in posttranslational protein regulation during somatic embryo differentiation. These results reveal the protein regulation dynamics of somatic embryogenesis and new players in somatic embryo differentiation, including their predicted phosphorylation motifs and phosphosites.


Asunto(s)
Fosforilación , Proteómica , Saccharum , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Técnicas de Embriogénesis Somática de Plantas , Saccharum/genética , Saccharum/metabolismo , Semillas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...