Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(7): e202317565, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38157448

RESUMEN

We used in vitro selection to identify DNAzymes that acylate the exocyclic nucleobase amines of cytidine, guanosine, and adenosine in DNA oligonucleotides. The acyl donor was the 2,3,5,6-tetrafluorophenyl ester (TFPE) of a 5'-carboxyl oligonucleotide. Yields are as high as >95 % in 6 h. Several of the N-acylation DNAzymes are catalytically active with RNA rather than DNA oligonucleotide substrates, and eight of nine DNAzymes for modifying C are site-specific (>95 %) for one particular substrate nucleotide. These findings expand the catalytic ability of DNA to include site-specific N-acylation of oligonucleotide nucleobases. Future efforts will investigate the DNA and RNA substrate sequence generality of DNAzymes for oligonucleotide nucleobase N-acylation, toward a universal approach for site-specific oligonucleotide modification.


Asunto(s)
ADN Catalítico , ADN Catalítico/genética , Oligonucleótidos , ADN , ARN , Catálisis
2.
Org Biomol Chem ; 21(9): 1910-1919, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36786764

RESUMEN

Amines can be alkylated using various reactions, such as reductive amination of aldehydes. In this study, we sought DNAzymes as catalytic DNA sequences that promote reductive amination with aliphatic amines, including DNA-anchored peptide substrates with lysine residues. By in vitro selection starting with either N40 or N20 random DNA pools, we identified many DNAzymes that catalyze reductive amination between the DNA oligonucleotide-anchored aliphatic amino group of DNA-C3-NH2 (C3 = short three-carbon tether) and a DNA-anchored benzaldehyde group in the presence of NaCNBH3 as reducing agent. At pH 5.2, 6.0, 7.5, or 9.0 in the presence of various divalent metal ion cofactors including Mg2+, Mn2+, Zn2+ and Ni2+, the DNAzymes have kobs up to 0.12 h-1 and up to 130-fold rate enhancement relative to the DNA-splinted but uncatalyzed background reaction. However, analogous selection experiments did not lead to any DNAzymes that function with DNA-HEG-NH2 [HEG = long hexa(ethylene glycol) tether], or with short- and long-tethered DNA-AAAKAA and DNA-HEG-AAAKAA lysine-containing hexapeptide substrates (A = alanine, K = lysine). Including a variety of other amino acids in place of the neighboring alanines also did not lead to DNAzymes. These findings establish a practical limit on the substrate scope of DNAzyme catalysis for N-alkylation of aliphatic amines by reductive amination. The lack of DNAzymes for reductive amination with any substrate more structurally complex than DNA-C3-NH2 is likely related to the challenge in binding and spatially organizing those other substrates. Because other reactions such as aliphatic amine N-acylation are feasible for DNAzymes with DNA-anchored peptides, our findings show that the ability to identify DNAzymes depends strongly on both the investigated reaction and the composition of the substrate.


Asunto(s)
ADN Catalítico , Aminación , ADN Catalítico/metabolismo , Lisina/metabolismo , Aminas/química , ADN/metabolismo , Catálisis
3.
Proc Natl Acad Sci U S A ; 119(10): e2119891119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35235458

RESUMEN

Both neuronal and genetic mechanisms regulate brain function. While there are excellent methods to study neuronal activity in vivo, there are no nondestructive methods to measure global gene expression in living brains. Here, we present a method, epigenetic MRI (eMRI), that overcomes this limitation via direct imaging of DNA methylation, a major gene-expression regulator. eMRI exploits the methionine metabolic pathways for DNA methylation to label genomic DNA through 13C-enriched diets. A 13C magnetic resonance spectroscopic imaging method then maps the spatial distribution of labeled DNA. We validated eMRI using pigs, whose brains have stronger similarity to humans in volume and anatomy than rodents, and confirmed efficient 13C-labeling of brain DNA. We also discovered strong regional differences in global DNA methylation. Just as functional MRI measurements of regional neuronal activity have had a transformational effect on neuroscience, we expect that the eMRI signal, both as a measure of regional epigenetic activity and as a possible surrogate for regional gene expression, will enable many new investigations of human brain function, behavior, and disease.


Asunto(s)
Encéfalo/metabolismo , Metilación de ADN , Epigénesis Genética , Imagen por Resonancia Magnética/métodos , Animales , Encéfalo/diagnóstico por imagen , Isótopos de Carbono/metabolismo , Espectroscopía de Resonancia Magnética con Carbono-13 , Humanos , Metionina/administración & dosificación , Reproducibilidad de los Resultados , Porcinos
4.
Org Biomol Chem ; 19(1): 171-181, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33150349

RESUMEN

DNAzymes were previously identified by in vitro selection for a variety of chemical reactions, including several biologically relevant peptide modifications. However, finding DNAzymes for peptide lysine acylation is a substantial challenge. By using suitably reactive aryl ester acyl donors as the electrophiles, here we used in vitro selection to identify DNAzymes that acylate amines, including lysine side chains of DNA-anchored peptides. Some of the DNAzymes can transfer a small glutaryl group to an amino group. These results expand the scope of DNAzyme catalysis and suggest the future broader applicability of DNAzymes for sequence-selective lysine acylation of peptide and protein substrates.


Asunto(s)
Aminas/química , Biocatálisis , ADN Catalítico/metabolismo , Lisina/química , Péptidos/química , Acilación
5.
J Am Chem Soc ; 139(1): 255-261, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-27935689

RESUMEN

We describe an unprecedented DNA-catalyzed DNA cleavage process in which a radical-based reaction pathway cleanly results in excision of most atoms of a specific guanosine nucleoside. Two new deoxyribozymes (DNA enzymes) were identified by in vitro selection from N40 or N100 random pools initially seeking amide bond hydrolysis, although they both cleave simple single-stranded DNA oligonucleotides. Each deoxyribozyme generates both superoxide (O2-• or HOO•) and hydrogen peroxide (H2O2) and leads to the same set of products (3'-phosphoglycolate, 5'-phosphate, and base propenal) as formed by the natural product bleomycin, with product assignments by mass spectrometry and colorimetric assay. We infer the same mechanistic pathway, involving formation of the C4' radical of the guanosine nucleoside that is subsequently excised. Consistent with a radical pathway, glutathione fully suppresses catalysis. Conversely, adding either superoxide or H2O2 from the outset strongly enhances catalysis. The mechanism of generation and involvement of superoxide and H2O2 by the deoxyribozymes is not yet defined. The deoxyribozymes do not require redox-active metal ions and function with a combination of Zn2+ and Mg2+, although including Mn2+ increases the activity, and Mn2+ alone also supports catalysis. In contrast to all of these observations, unrelated DNA-catalyzed radical DNA cleavage reactions require redox-active metals and lead to mixtures of products. This study reports an intriguing example of a well-defined, DNA-catalyzed, radical reaction process that cleaves single-stranded DNA and requires only redox-inactive metal ions.


Asunto(s)
División del ADN , ADN Catalítico/metabolismo , Peróxido de Hidrógeno/metabolismo , Superóxidos/metabolismo , ADN Catalítico/química , Peróxido de Hidrógeno/química , Espectrometría de Masas , Superóxidos/química
6.
Chem Commun (Camb) ; 52(68): 10439, 2016 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-27490183

RESUMEN

Correction for 'DNA-catalyzed glycosylation using aryl glycoside donors' by Anthony R. Hesser et al., Chem. Commun., 2016, 52, 9259-9262.

7.
Angew Chem Int Ed Engl ; 55(34): 10052-6, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27391404

RESUMEN

We show that DNA enzymes (deoxyribozymes) can introduce azide functional groups at tyrosine residues in peptide substrates. Using in vitro selection, we identified deoxyribozymes that transfer the 2'-azido-2'-deoxyadenosine 5'-monophosphoryl group (2'-Az-dAMP) from the analogous 5'-triphosphate (2'-Az-dATP) onto the tyrosine hydroxyl group of a peptide, which is either tethered to a DNA anchor or free. Some of the new deoxyribozymes are general with regard to the amino acid residues surrounding the tyrosine, while other DNA enzymes are sequence-selective. We use one of the new deoxyribozymes to modify free peptide substrates by attaching PEG moieties and fluorescent labels.


Asunto(s)
Azidas/metabolismo , ADN Catalítico/metabolismo , Péptidos/metabolismo , Tirosina/metabolismo , Azidas/química , Biocatálisis , ADN Catalítico/química , Conformación Molecular , Péptidos/química , Tirosina/química
8.
Chem Commun (Camb) ; 52(59): 9259-62, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27355482

RESUMEN

We report the identification by in vitro selection of Zn(2+)/Mn(2+)-dependent deoxyribozymes that glycosylate the 3'-OH of a DNA oligonucleotide. Both ß and α anomers of aryl glycosides can be used as the glycosyl donors. Individual deoxyribozymes are each specific for a particular donor anomer.


Asunto(s)
Biocatálisis , ADN Catalítico/metabolismo , Glicósidos/metabolismo , ADN Catalítico/química , Glicósidos/química , Glicosilación
9.
Org Biomol Chem ; 14(20): 4697-703, 2016 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-27138704

RESUMEN

We evaluate the ability of hexahistidine (His6) tags on peptide and protein substrates to recruit deoxyribozymes for modifying those substrates. For two different deoxyribozymes, one that creates tyrosine-RNA nucleopeptides and another that phosphorylates tyrosine side chains, we find substantial improvements in yield, kobs, and Km for peptide substrates due to recruiting by His6/Cu(2+). However, the recruiting benefits of the histidine tag are not observed for larger protein substrates, likely because the tested deoxyribozymes either cannot access the target peptide segments or cannot function when these segments are presented in a structured protein context.


Asunto(s)
Biocatálisis , ADN Catalítico/metabolismo , Histidina/química , Péptidos/química , Péptidos/metabolismo , Proteínas/química , Proteínas/metabolismo , ARN/metabolismo
10.
Trends Biochem Sci ; 41(7): 595-609, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27236301

RESUMEN

The discovery of natural RNA enzymes (ribozymes) prompted the pursuit of artificial DNA enzymes (deoxyribozymes) by in vitro selection methods. A key motivation is the conceptual and practical advantages of DNA relative to proteins and RNA. Early studies focused on RNA-cleaving deoxyribozymes, and more recent experiments have expanded the breadth of catalytic DNA to many other reactions. Including modified nucleotides has the potential to widen the scope of DNA enzymes even further. Practical applications of deoxyribozymes include their use as sensors for metal ions and small molecules. Structural studies of deoxyribozymes are only now beginning; mechanistic experiments will surely follow. Following the first report 21 years ago, the field of deoxyribozymes has promise for both fundamental and applied advances in chemistry, biology, and other disciplines.


Asunto(s)
ADN Catalítico/metabolismo , ADN Catalítico/química
11.
Biochemistry ; 55(18): 2671-6, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27063020

RESUMEN

T4 polynucleotide kinase is widely used for 5'-phosphorylation of DNA and RNA oligonucleotide termini, but no natural protein enzyme is capable of 3'-phosphorylation. Here, we report the in vitro selection of deoxyribozymes (DNA enzymes) capable of DNA oligonucleotide 3'-phosphorylation, using a 5'-triphosphorylated RNA transcript (pppRNA) as the phosphoryl donor. The basis of selection was the capture, during each selection round, of the 3'-phosphorylated DNA substrate terminus by 2-methylimidazole activation of the 3'-phosphate (forming 3'-MeImp) and subsequent splint ligation with a 5'-amino DNA oligonucleotide. Competing and precedented DNA-catalyzed reactions were DNA phosphodiester hydrolysis or deglycosylation, each also leading to a 3'-phosphate but at a different nucleotide position within the DNA substrate. One oligonucleotide 3'-kinase deoxyribozyme, obtained from an N40 random pool and named 3'Kin1, can 3'-phosphorylate nearly any DNA oligonucleotide substrate for which the 3'-terminus has the sequence motif 5'-NKR-3', where N denotes any oligonucleotide sequence, K = T or G, and R = A or G. These results establish the viabilty of in vitro selection for identifying DNA enzymes that 3'-phosphorylate DNA oligonucleotides.


Asunto(s)
ADN Catalítico/química , Oligodesoxirribonucleótidos/química , Fosforilación
12.
J Am Chem Soc ; 138(7): 2106-9, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26854515

RESUMEN

DNA catalysts (deoxyribozymes) for a variety of reactions have been identified by in vitro selection. However, for certain reactions this identification has not been achieved. One important example is DNA-catalyzed amide hydrolysis, for which a previous selection experiment instead led to DNA-catalyzed DNA phosphodiester hydrolysis. Subsequent efforts in which the selection strategy deliberately avoided phosphodiester hydrolysis led to DNA-catalyzed ester and aromatic amide hydrolysis, but aliphatic amide hydrolysis has been elusive. In the present study, we show that including modified nucleotides that bear protein-like functional groups (any one of primary amino, carboxyl, or primary hydroxyl) enables identification of amide-hydrolyzing deoxyribozymes. In one case, the same deoxyribozyme sequence without the modifications still retains substantial catalytic activity. Overall, these findings establish the utility of introducing protein-like functional groups into deoxyribozymes for identifying new catalytic function. The results also suggest the longer-term feasibility of deoxyribozymes as artificial proteases.


Asunto(s)
Amidas/química , ADN/química , Catálisis , Hidrólisis
13.
J Mol Evol ; 81(5-6): 218-24, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26407964

RESUMEN

Deoxyribozymes (DNA enzymes) have been developed for a growing variety of chemical reactions, including with peptide substrates. We recently described the first tyrosine kinase deoxyribozymes, which lacked the ability to discriminate among peptide substrates on the basis of the amino acids surrounding the tyrosine residue. Those deoxyribozymes were identified by in vitro selection using a DNA-anchored peptide substrate in which the residues neighboring tyrosine were all alanine. Here, we performed in vitro selection for tyrosine kinase activity using three peptide substrates in which the neighboring residues included a variety of side chains. For one of these three peptides, we found numerous deoxyribozymes that discriminate strongly in favor of phosphorylating tyrosine when the surrounding residues are specifically those used in the selection process. Three different short peptide sequence motifs of 2-4 amino acids were required for catalysis by three unique deoxyribozymes. For a second peptide substrate, the selection process led to one deoxyribozyme which exhibits partial discrimination among peptide sequences. These findings establish the feasibility of identifying DNA enzymes that catalyze sequence-selective tyrosine phosphorylation, which suggests the downstream practical utility of such deoxyribozymes. More broadly, this outcome reinforces the conclusion that nucleic acid catalysts can discriminate among peptide substrates in the context of biochemically relevant reactions.


Asunto(s)
ADN Catalítico/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Péptidos/metabolismo , Técnica SELEX de Producción de Aptámeros , Especificidad por Sustrato
14.
Environ Sci Technol ; 49(16): 9905-13, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26182235

RESUMEN

We used in vitro selection to identify new DNA aptamers for two endocrine-disrupting compounds often found in treated and natural waters, 17ß-estradiol (E2) and 17α-ethynylestradiol (EE). We used equilibrium filtration to determine aptamer sensitivity/selectivity and dimethyl sulfate (DMS) probing to explore aptamer binding sites. The new E2 aptamers are at least 74-fold more sensitive for E2 than is a previously reported DNA aptamer, with dissociation constants (Kd values) of 0.6 µM. Similarly, the EE aptamers are highly sensitive for EE, with Kd of 0.5-1.0 µM. Selectivity values indicate that the E2 aptamers bind E2 and a structural analogue, estrone (E1), equally well and are up to 74-fold selective over EE. One EE aptamer is 53-fold more selective for EE over E2 or E1, but the other binds EE, E2, and E1 with similar affinity. The new aptamers do not lose sensitivity or selectivity in natural water from a local lake, despite the presence of natural organic matter (∼4 mg/L TOC). DMS probing suggests that E2 binding occurs in relatively flexible single-stranded DNA regions, an important finding for rational redesign of aptamers and their incorporation into sensing platforms. This is the first report of aptamers with strong selectivity for E2 and E1 over EE, or with strong selectivity for EE over E2 and E1. Such selectivity is important for achieving the goal of creating practically useful DNA-based sensors that can distinguish structurally similar estrogenic compounds in natural waters.


Asunto(s)
Aptámeros de Nucleótidos/química , Estradiol/análisis , Etinilestradiol/análisis , Contaminantes Químicos del Agua/análisis , Agua/química , Estradiol/química , Etinilestradiol/química , Filtración , Cinética , Ésteres del Ácido Sulfúrico/química
15.
J Am Chem Soc ; 137(30): 9575-8, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26200899

RESUMEN

Dehydroalanine (Dha) is a nonproteinogenic electrophilic amino acid that is a synthetic intermediate or product in the biosynthesis of several bioactive cyclic peptides such as lantibiotics, thiopeptides, and microcystins. Dha also enables labeling of proteins and synthesis of post-translationally modified proteins and their analogues. However, current chemical approaches to introducing Dha into peptides have substantial limitations. Using in vitro selection, here we show that DNA can catalyze Zn(2+) or Zn(2+)/Mn(2+)-dependent formation of Dha from phosphoserine (pSer), i.e., exhibit pSer lyase activity, a fundamentally new DNA-catalyzed reaction. Two new pSer lyase deoxyribozymes, named Dha-forming deoxyribozymes 1 and 2 (DhaDz1 and DhaDz2), each function with multiple turnover on the model hexapeptide substrate that was used during selection. Using DhaDz1, we generated Dha from pSer within an unrelated linear 13-mer peptide. Subsequent base-promoted intramolecular cyclization of homocysteine into Dha formed a stable cystathionine (thioether) analogue of the complement inhibitor compstatin. These findings establish the fundamental catalytic ability of DNA to eliminate phosphate from pSer to form Dha and suggest that with further development, pSer lyase deoxyribozymes will have broad practical utility for site-specific enzymatic synthesis of Dha from pSer in peptide substrates.


Asunto(s)
ATP Citrato (pro-S)-Liasa/metabolismo , Alanina/análogos & derivados , Biocatálisis , ADN Catalítico/metabolismo , Péptidos/química , Péptidos/metabolismo , ATP Citrato (pro-S)-Liasa/química , Alanina/biosíntesis , Alanina/química , Ciclización , ADN Catalítico/química
16.
Acc Chem Res ; 48(5): 1369-79, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25939889

RESUMEN

Catalysis is a fundamental chemical concept, and many kinds of catalysts have considerable practical value. Developing entirely new catalysts is an exciting challenge. Rational design and screening have provided many new small-molecule catalysts, and directed evolution has been used to optimize or redefine the function of many protein enzymes. However, these approaches have inherent limitations that prompt the pursuit of different kinds of catalysts using other experimental methods. Nature evolved RNA enzymes, or ribozymes, for key catalytic roles that in modern biology are limited to phosphodiester cleavage/ligation and amide bond formation. Artificial DNA enzymes, or deoxyribozymes, have great promise for a broad range of catalytic activities. They can be identified from unbiased (random) sequence populations as long as the appropriate in vitro selection strategies can be implemented for their identification. Notably, in vitro selection is different in key conceptual and practical ways from rational design, screening, and directed evolution. This Account describes the development by in vitro selection of DNA catalysts for many different kinds of covalent modification reactions of peptide and protein substrates, inspired in part by our earlier work with DNA-catalyzed RNA ligation reactions. In one set of studies, we have sought DNA-catalyzed peptide backbone cleavage, with the long-term goal of artificial DNA-based proteases. We originally anticipated that amide hydrolysis should be readily achieved, but in vitro selection instead surprisingly led to deoxyribozymes for DNA phosphodiester hydrolysis; this was unexpected because uncatalyzed amide bond hydrolysis is 10(5)-fold faster. After developing a suitable selection approach that actively avoids DNA hydrolysis, we were able to identify deoxyribozymes for hydrolysis of esters and aromatic amides (anilides). Aliphatic amide cleavage remains an ongoing focus, including via inclusion of chemically modified DNA nucleotides in the catalyst, which we have recently found to enable this cleavage reaction. In numerous other efforts, we have investigated DNA-catalyzed peptide side chain modification reactions. Key successes include nucleopeptide formation (attachment of oligonucleotides to peptide side chains) and phosphatase and kinase activities (removal and attachment of phosphoryl groups to side chains). Through all of these efforts, we have learned the importance of careful selection design, including the frequent need to develop specific "capture" reactions that enable the selection process to provide only those DNA sequences that have the desired catalytic functions. We have established strategies for identifying deoxyribozymes that accept discrete peptide and protein substrates, and we have obtained data to inform the key choice of random region length at the outset of selection experiments. Finally, we have demonstrated the viability of modular deoxyribozymes that include a small-molecule-binding aptamer domain, although the value of such modularity is found to be minimal, with implications for many selection endeavors. Advances such as those summarized in this Account reveal that DNA has considerable catalytic abilities for biochemically relevant reactions, specifically including covalent protein modifications. Moreover, DNA has substantially different, and in many ways better, characteristics than do small molecules or proteins for a catalyst that is obtained "from scratch" without demanding any existing information on catalyst structure or mechanism. Therefore, prospects are very strong for continued development and eventual practical applications of deoxyribozymes for peptide and protein modification.


Asunto(s)
ADN/química , Proteínas/química , Catálisis , ADN/metabolismo , ADN Catalítico/química , ADN Catalítico/metabolismo , Hidrólisis , Conformación Molecular , Proteínas/metabolismo
17.
Chembiochem ; 15(13): 1905-10, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25056930

RESUMEN

We report DNA catalysts (deoxyribozymes) that join tyrosine-containing peptides to RNA and DNA in one step and without requiring protecting groups on either the peptide or the nucleic acid. Our previous efforts towards this goal required tethering the peptide to a DNA anchor oligonucleotide. Here, we established direct in vitro selection for deoxyribozymes that use untethered, free peptide substrates. This approach enables imposition of selection pressure via reduced peptide concentration and leads to preparatively useful lower apparent Km values of ∼100 µM peptide. Use of phosphorimidazolide (Imp) rather than triphosphate as the electrophile enables reactivity of either terminus (5' or 3') of both RNA and DNA. Our findings establish a generalizable means of joining unprotected peptide to nucleic acid in one step by using DNA catalysts identified by in vitro selection.


Asunto(s)
ADN/química , Ácidos Nucleicos/química , Péptidos/química , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/química , Catálisis , Clonación Molecular , Imidazoles/química , Cinética , Oligonucleótidos/química , ARN Catalítico/química
18.
Angew Chem Int Ed Engl ; 53(34): 9045-50, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-24981820

RESUMEN

Catalyzing the covalent modification of aliphatic amino groups, such as the lysine (Lys) side chain, by nucleic acids has been challenging to achieve. Such catalysis will be valuable, for example, for the practical preparation of Lys-modified proteins. We previously reported the DNA-catalyzed modification of the tyrosine and serine hydroxy side chains, but Lys modification has been elusive. Herein, we show that increasing the reactivity of the electrophilic reaction partner by using 5'-phosphorimidazolide (5'-Imp) rather than 5'-triphosphate (5'-ppp) enables the DNA-catalyzed modification of Lys in a DNA-anchored peptide substrate. The DNA-catalyzed reaction of Lys with 5'-Imp is observed in an architecture in which the nucleophile and electrophile are not preorganized. In contrast, previous efforts showed that catalysis was not observed when Lys and 5'-ppp were used in a preorganized arrangement. Therefore, substrate reactivity is more important than preorganization in this context. These findings will assist ongoing efforts to identify DNA catalysts for reactions of protein substrates at lysine side chains.


Asunto(s)
ADN/química , Lisina/química , Catálisis
19.
Chem Commun (Camb) ; 50(66): 9317-20, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25000337

RESUMEN

We assess the utility of integrating a predetermined aptamer DNA module adjacent to a random catalytic DNA region for identifying new deoxyribozymes by in vitro selection. By placing a known ATP aptamer next to an N40 random region, an explicitly modular DNA catalyst for tyrosine side chain phosphorylation is identified. The results have implications for broader identification of deoxyribozymes that function with small-molecule substrates.


Asunto(s)
Aptámeros de Nucleótidos/química , ADN Catalítico/química , Proteínas Tirosina Quinasas/química , Secuencia de Bases , Dominio Catalítico , Datos de Secuencia Molecular
20.
J Am Chem Soc ; 135(43): 16014-7, 2013 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-24127695

RESUMEN

We previously reported that DNA catalysts (deoxyribozymes) can hydrolyze DNA phosphodiester linkages, but DNA-catalyzed amide bond hydrolysis has been elusive. Here we used in vitro selection to identify DNA catalysts that hydrolyze ester linkages as well as DNA catalysts that hydrolyze aromatic amides, for which the leaving group is an aniline moiety. The aromatic amide-hydrolyzing deoxyribozymes were examined using linear free energy relationship analysis. The hydrolysis reaction is unaffected by substituents on the aromatic ring (ρ ≈ 0), suggesting general acid-catalyzed elimination as the likely rate-determining step of the addition-elimination hydrolysis mechanism. These findings establish that DNA has the catalytic ability to achieve hydrolysis of esters and aromatic amides as carbonyl-based substrates, and they suggest a mechanism-based approach to achieve DNA-catalyzed aliphatic amide hydrolysis.


Asunto(s)
Amidas/química , ADN/química , Ésteres/química , Hidrocarburos Aromáticos/química , Anilidas/química , Catálisis , ADN Catalítico/química , Hidrólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA